8. Introduction to Trigonometry
medium

જો $A, B$ અને $C$ એ $\triangle ABC$ ના ખૂણા હોય,તો સાબિત કરો કે,

$\sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2}$

Option A
Option B
Option C
Option D

Solution

We know that for a triangle $ABC$

$\angle A+\angle B+\angle C=180^{\circ}$

$\angle B+\angle C=180^{\circ}-\angle A$

$\frac{\angle B+\angle C}{2}=90^{\circ}-\frac{\angle A}{2}$

$\sin \left(\frac{B+C}{2}\right)=\sin \left(90^{\circ}-\frac{A}{2}\right)$

$=\cos \left(\frac{ A }{2}\right)$

Standard 10
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.