નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિત કરો :

$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$

$L.H.S.$ $=\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}$

$=\frac{\frac{\sin \theta}{\cos \theta}}{1-\frac{\cos \theta}{\sin \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{1-\frac{\sin \theta}{\cos \theta}}$

$=\frac{\frac{\sin \theta}{\cos \theta}}{\frac{\sin \theta-\cos \theta}{\sin \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{\frac{\cos \theta-\sin \theta}{\cos \theta}}$

$=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}-\frac{\cos ^{2} \theta}{\sin \theta(\sin \theta-\cos \theta)}$

$=\frac{1}{(\sin \theta-\cos \theta)}\left[\frac{\sin ^{2} \theta}{\cos \theta}-\frac{\cos ^{2} \theta}{\sin \theta}\right]$

$=\left(\frac{1}{\sin \theta-\cos \theta}\right)\left[\frac{\sin ^{3} \theta-\cos ^{3} \theta}{\sin \theta \cos \theta}\right]$

$=\left(\frac{1}{\sin \theta-\cos \theta}\right)\left[\frac{(\sin \theta-\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cos \theta\right)}{\sin \theta \cos \theta}\right]$

$=\frac{(1+\sin \theta \cos \theta)}{(\sin \theta \cos \theta)}$

$=\sec \theta \operatorname{cosec} \theta+1$

$= R . H.S.$

Similar Questions

જો $A, B$ અને $C$ એ $\triangle ABC$ ના ખૂણા હોય,તો સાબિત કરો કે,

$\sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2}$

જો $4A$ એ લઘુકોણનું માપ હોય તથા $\sec 4 A =\operatorname{cosec}\left( A -20^{\circ}\right)$ હોય, તો $A$ ની કિંમત શોધો.

કિંમત શોધો :

$\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$

જો $\tan A =\cot B$ હોય, તો સાબિત કરો કે, $A + B =90^{\circ}$

નીચેના વિધાનો સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો :

$A =0^{\circ}$ માટે $\cot$ $A$ અવ્યાખ્યાયિત છે.