જો $4A$ એ લઘુકોણનું માપ હોય તથા $\sec 4 A =\operatorname{cosec}\left( A -20^{\circ}\right)$ હોય, તો $A$ ની કિંમત શોધો.
$110$
$22$
$50$
$90$
નીચેના વિધાનો સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો :
$A =0^{\circ}$ માટે $\cot$ $A$ અવ્યાખ્યાયિત છે.
જ્યારે $A =$ ........... હોય, ત્યારે $\sin 2 A=2 \sin A$ સત્ય હોય.
નીચેના વિધાનો સત્ય છે કે નહિ તે કારણ આપી જણાવો :
$(i)$ ખૂણા $A$ ના $cosecant$ને સંક્ષિપ્તમાં $\cos A$ તરીકે લખાય છે.
$(ii)$ $\cot$ અને $A$ નો ગુણાકાર $\cot A$ છે.
$(iii)$ $\theta$ માપવાળા કોઈ એક ખૂણા માટે $\sin \theta=\frac{4}{3}$ શક્ય છે.
સાબિત કરો :
$(i)$ $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$
$(ii)$ $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$
નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિત કરો :
$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$