Show that:

$(i)$ $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$

$(ii)$ $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

(i) $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}$

$=\tan \left(90^{\circ}-42^{\circ}\right) \tan \left(90^{\circ}-67^{\circ}\right) \tan 42^{\circ} \tan 67^{\circ}$

$=\cot 42^{*} \cot 67^{*} \tan 42^{*} \tan 67^{\circ}$

$=\left(\cot 42^{\circ} \tan 42^{\circ}\right)\left(\cot 67^{*} \tan 67^{\circ}\right)$

$=(1)(1)$

$=1$

(ii) $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}$

$=\cos \left(90^{\circ}-52^{\circ}\right) \cos \left(90^{\circ}-38^{\circ}\right)-\sin 38^{\circ} \sin 52^{\circ}$

$=\sin 52^{*} \sin 38^{\circ}-\sin 38^{\circ} \sin 52^{*}$

$=0$

Similar Questions

In $\triangle$ $ABC,$ right-angled at $B$, $AB =5\, cm$ and $\angle ACB =30^{\circ}$ (see $Fig.$). Determine the lengths of the sides $BC$ and $AC .$

State whether the following are true or false. Justify your answer.

$(i)$ The value of tan $A$ is always less than $1 .$

$(ii)$ $\sec A=\frac{12}{5}$ for some value of angle $A$.

Evaluate $\frac{\tan 65^{\circ}}{\cot 25^{\circ}}$

Express the ratios $\cos A ,$ tan $A$ and $\sec A$ in terms of $\sin A .$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$