Show that:
$(i)$ $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$
$(ii)$ $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$
(i) $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}$
$=\tan \left(90^{\circ}-42^{\circ}\right) \tan \left(90^{\circ}-67^{\circ}\right) \tan 42^{\circ} \tan 67^{\circ}$
$=\cot 42^{*} \cot 67^{*} \tan 42^{*} \tan 67^{\circ}$
$=\left(\cot 42^{\circ} \tan 42^{\circ}\right)\left(\cot 67^{*} \tan 67^{\circ}\right)$
$=(1)(1)$
$=1$
(ii) $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}$
$=\cos \left(90^{\circ}-52^{\circ}\right) \cos \left(90^{\circ}-38^{\circ}\right)-\sin 38^{\circ} \sin 52^{\circ}$
$=\sin 52^{*} \sin 38^{\circ}-\sin 38^{\circ} \sin 52^{*}$
$=0$
In $\triangle$ $ABC,$ right-angled at $B$, $AB =5\, cm$ and $\angle ACB =30^{\circ}$ (see $Fig.$). Determine the lengths of the sides $BC$ and $AC .$
State whether the following are true or false. Justify your answer.
$(i)$ The value of tan $A$ is always less than $1 .$
$(ii)$ $\sec A=\frac{12}{5}$ for some value of angle $A$.
Evaluate $\frac{\tan 65^{\circ}}{\cot 25^{\circ}}$
Express the ratios $\cos A ,$ tan $A$ and $\sec A$ in terms of $\sin A .$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$