નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિતકરો :

$\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A$

$\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=\frac{1+\frac{\sin ^{2} A}{\cos ^{2} A}}{1+\frac{\cos ^{2} A}{\sin ^{2} A}}=\frac{\frac{\cos ^{2} A+\sin ^{2} A}{\cos ^{2} A}}{\frac{\sin ^{2} A+\cos ^{2} A}{\sin ^{2} A}}$

$=\frac{1}{\cos ^{2} A}=\frac{\sin ^{2} A}{\sin ^{2} A}$

$=\tan ^{2} A$

$\left(\frac{1-\tan A }{1-\cot A }\right)^{2}=\frac{1+\tan ^{2} A -2 \tan A }{1+\cot ^{2} A -2 \cot A }$

$=\frac{\sec ^{2} A-2 \tan A}{\operatorname{cosec}^{2} A-2 \cot A}$

$=\frac{\frac{1}{\cos ^{2} A}-\frac{2 \sin A}{\cos A}}{\frac{1}{\sin ^{2} A}-\frac{2 \cos A}{\sin A}}=\frac{\frac{1-2 \sin A \cos A}{\cos ^{2} A}}{\frac{1-2 \sin A \cos A}{\sin ^{2} A}}$

$=\frac{\sin ^{2} A }{\cos ^{2} A }=\tan ^{2} A$

Similar Questions

$\angle A$ અને $\angle B$ એવા લઘુકોણો છે કે, જેથી $\cos A =\cos B .$ સાબિત કરો કે $\angle A =\angle B$.

સાબિત કરો કે, $\sec A(1-\sin A)(\sec A+\tan A)=1$

નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિત કરો :

$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$

જો $\tan ( A + B )=\sqrt{3}$ અને $\tan ( A - B )=\frac{1}{\sqrt{3}} ; 0^{\circ}< A + B \leq 90^{\circ} ; A > B ,$ તો $A$ અને $B$ શોધો.

 

નીચેના વિધાનો સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો :

$\theta$ ના દરેક મૂલ્ય માટે $\sin \theta=\cos \theta$ થાય.