फलन $f(x) = {x^2} - 4$ के लिये रोले प्रमेय किस अन्तराल में सत्य है
$[-2, 0]$
$[-2, 2]$
$\left[ {0,\,\frac{1}{2}} \right]$
$[0,\,\,2]$
इस प्रश्न में $[x]$ वह अधिकतम पूर्णांक है जो दी गयी वास्तविक संख्या $x$ से कम या बराबर है। दिये गए फलन $f(x)=[x] \sin \pi x$ पर विचार करें। निम्नलिखित में से कौन सा कथन उचित है:
फलनों के लिए माध्यमान प्रमेय की अनुपयोगिता की जाँच कीजिए।:
$(i)$ $f(x)=[x]$ के लिए $x \in[5,9]$
$(ii)$ $f(x)=[x]$ के लिए $x \in[-2,2]$
$(iii)$ $f(x)=x^{2}-1$ के लिए $x \in[1,2]$
यदि , अन्तराल $[1,\,2]$ में रौले प्रमेय को संतुष्ट करता है तथा $f(x)$ ,$[1,\,2]$ में सतत् है, तो $\int_1^2 {f'(x)dx} $ का मान है
यदि मध्यमान प्रमेय से, $f'({x_1}) = \frac{{f(b) - f(a)}}{{b - a}}$, तो
माना कोई फलन $f$ अंतराल $[0,2]$ में संतत है तथा $(0,2)$ में दो बार अवकलनीय है। यदि $f (0)=0$, $f(1)=1$ तथा $f(2)=2$, हैं, तो