- Home
- Standard 12
- Physics
समान्तर प्लेट संधारित्र की प्लेटों के मध्य की दूरी $d$ और क्षेत्रफल $A$ है। इसकी प्लेटों के मध्य $k$ परावैद्युतांक के पदार्थ की $t$ की मोटाई वाली $(t < d)$ एक शीट रखी जाती है, इसकी धारिता हो जाती है
$\frac{{{\varepsilon _0}A}}{{d + t\left( {1 - \frac{1}{k}} \right)}}$
$\frac{{{\varepsilon _0}A}}{{d + t\left( {1 + \frac{1}{k}} \right)}}$
$\frac{{{\varepsilon _0}A}}{{d - t\left( {1 - \frac{1}{k}} \right)}}$
$\frac{{{\varepsilon _0}A}}{{d - t\left( {1 + \frac{1}{k}} \right)}}$
Solution

प्लेटों के मध्य विभवान्तर $V$ = $V_{air}$ + $V_{medium}$
$ = \frac{\sigma }{{{\varepsilon _0}}} \times (d – t) + \frac{\sigma }{{K{\varepsilon _0}}} \times t$
$V = \frac{\sigma }{{{\varepsilon _0}}}(d – t + \frac{t}{K})$
$ = \frac{Q}{{A{\varepsilon _0}}}(d – t + \frac{t}{K})$
अत: धारिता $C = \frac{Q}{V} = \frac{Q}{{\frac{Q}{{A{\varepsilon _0}}}(d – t + \frac{t}{K})}}$
$ = \frac{{{\varepsilon _0}A}}{{(d – t + \frac{t}{k})}} = \frac{{{\varepsilon _0}A}}{{d – t\,\left( {1 – \frac{1}{k}} \right)}}$