Show that the magnitude of a vector is equal to the square root of the scalar product of the vector with itself.
If $\overrightarrow{\mathrm{A}} \| \overrightarrow{\mathrm{B}}$, then $\theta=0^{\circ}$
$\therefore \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta=\mathrm{AB} \text { and } \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{A}}=|\overrightarrow{\mathrm{A}}||\overrightarrow{\mathrm{A}}|=\mathrm{A}^{2}$
$\therefore|\overrightarrow{\mathrm{A}}|=\sqrt{\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{A}}}$
hence the magnitude of a vector is equal to the square root of the scalar product of the vector with itself.
Magnitude of vector is equal to the square root of the scalar product of the vector with itself.
If $\overrightarrow A \times \overrightarrow B = \overrightarrow C + \overrightarrow D,$ then select the correct alternative-
Why the product of two vectors is not commutative ?
colum $I$ | colum $II$ |
$(A)$ $A \cdot B =| A \times B |$ | $(p)$ $\theta=90^{\circ}$ |
$(B)$ $A \cdot B = B ^2$ | $(q)$ $\theta=0^{\circ}$ or $180^{\circ}$ |
$(C)$ $|A+B|=|A-B|$ | $(r)$ $A=B$ |
$(D)$ $|A \times B|=A B$ | $(s)$ None |
If $\overrightarrow{ P }=3 \hat{ i }+\sqrt{3} \hat{ j }+2 \hat{ k }$ and $\overrightarrow{ Q }=4 \hat{ i }+\sqrt{3} \hat{ j }+2.5 \hat{ k }$ then, The unit vector in the direction of $\overrightarrow{ P } \times \overrightarrow{ Q }$ is $\frac{1}{x}(\sqrt{3} \hat{i}+\hat{j}-2 \sqrt{3} \hat{k})$. The value of $x$ is