Show that the magnitude of a vector is equal to the square root of the scalar product of the vector with itself.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

If $\overrightarrow{\mathrm{A}} \| \overrightarrow{\mathrm{B}}$, then $\theta=0^{\circ}$

$\therefore \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\mathrm{AB} \cos \theta=\mathrm{AB} \text { and } \overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{A}}=|\overrightarrow{\mathrm{A}}||\overrightarrow{\mathrm{A}}|=\mathrm{A}^{2}$

$\therefore|\overrightarrow{\mathrm{A}}|=\sqrt{\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{A}}}$

hence the magnitude of a vector is equal to the square root of the scalar product of the vector with itself.

Magnitude of vector is equal to the square root of the scalar product of the vector with itself.

Similar Questions

If $\overrightarrow A  \times \overrightarrow B = \overrightarrow C + \overrightarrow D,$ then select the correct alternative-

Why the product of two vectors is not commutative ?

If $\theta$ is the angle between two vectors $A$ and $B$, then match the following two columns.
colum $I$ colum $II$
$(A)$ $A \cdot B =| A \times B |$ $(p)$ $\theta=90^{\circ}$
$(B)$ $A \cdot B = B ^2$ $(q)$ $\theta=0^{\circ}$ or $180^{\circ}$
$(C)$ $|A+B|=|A-B|$ $(r)$ $A=B$
$(D)$ $|A \times B|=A B$ $(s)$ None

If $\overrightarrow{ P }=3 \hat{ i }+\sqrt{3} \hat{ j }+2 \hat{ k }$ and $\overrightarrow{ Q }=4 \hat{ i }+\sqrt{3} \hat{ j }+2.5 \hat{ k }$ then, The unit vector in the direction of $\overrightarrow{ P } \times \overrightarrow{ Q }$ is $\frac{1}{x}(\sqrt{3} \hat{i}+\hat{j}-2 \sqrt{3} \hat{k})$. The value of $x$ is

  • [JEE MAIN 2023]

The two vectors $\vec A = -2\widehat i + \widehat j + 3\widehat k$ and $\vec B = 7\widehat i + 5\widehat j + 3\widehat k$ are :-