સાબિત કરો કે ગણ $\{1,2,3\} $ માં $(1,2)$ અને $(2,1)$ ને સમાવતા સામ્ય સંબંધની સંખ્યા બે છે.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The smallest equivalence relation $R_{1}$ containing $(1,2)$ and $(2,1)$ is $\{(1,1)$ $(2,2)$, $(3,3)$, $(1,2)$, $(2,1)\}$. Now we are left with only $4$ pairs namely $(2,3)$, $(3,2)$ $,(1,3)$ and $(3,1) $. If we add any one, say $(2,3)$ to $R_{1},$ then for symmetry we must add $(3,2)$ also and now for transitivity we are forced to add $( 1,3 )$ and $( 3,1)$. Thus, the only equivalence relation bigger than $R_{1}$ is the universal relation. This shows that the total number of equivalence relations containing $(1,2) $ and $(2,1) $ is two.

Similar Questions

જે સ્વવાચક અને પરંપરિત હોય પરંતુ સંમિત ના હોય તેવા એક સંબંધનું ઉદાહરણ આપો 

ધારોકે $R =\{( P , Q ) \mid P$ અને $Q$ ઊગમબિંદુથી સમાન અંતરે આવેલ છે $\}$. એ એક સંબંધ છે, તો $(1,- 1)$ નો સામ્ય વર્ગ એ ........... ગણ છે.

  • [JEE MAIN 2021]

સાબિત કરો કે ગણ $A=\{1,2,3,4,5\}$ પર વ્યાખ્યાયિત સંબંધ $R =\{(a, b):|a-b|$ યુગ્મ છે $\} $ સામ્ય સંબંધ છે. સાબિત કરો કે $\{1,3,5\}$ ના બધા જ ઘટકો એકબીજા સાથે સંબંધ $R$ ધરાવે છે અને $ \{2,4\}$ ના બધા જ ઘટકો એકબીજા સાથે સંબંધ $R$ ધરાવે છે. પરંતુ $\{1,3,5\}$ નો એક પણ ઘટક $ \{2,4\}$ ના કોઈ પણ ઘટક સાથે સંબંધ $R$ ધરાવતો નથી.

સંબંધ $R$ એ ગણ $A=\{1,2,3,4,5,6,7\}$ પર $R =\{(a, b):$ $a$ અને $b$ બંને અયુગ્મ અથવા બંને યુગ્મ $\} $ દ્વારા વ્યાખ્યાયિત છે. સાબિત કરો કે $R$ એ સામ્ય સંબંધ છે. એ સાથે જ સાબિત કરો કે $ \{1,3,5,7\}$ ના બધા જ ઘટકો $R$ દ્વારા એકબીજા સાથે સંબંધિત છે અને $\{2,4,6\}$ ના બધા જ ઘટકો $R$ દ્વારા એકબીજા સાથે સંબંધિત છે, પરંતુ $\{1,3,5,7\}$ નો કોઈ પણ ઘટક ઉપગણ $\{2,4,6\}$ ના કોઈ પણ ઘટક સાથે $R$ દ્વારા સંબંધિત નથી.

ધારોકે $A=\{0,3,4,6,7,8,9,10\}$ અને $R$ એ $A$ પર વ્યાખ્યાયિત એવો સંબંધ છે કે જેથી $R=\{(x, y) \in A \times A: x-y$ એ એકી ધન પૂણાંક છે અથવા $x-y=2\}$. સંબંધ $R$ સંમિત સંબંધ બને તે માટે તેમાં ઉમેરાતા ન્યૂનતમ ધટકોની સંખ્યા $........$ છે.

  • [JEE MAIN 2023]