શ્રેણીઓ $a,$ $ar,$ $a r^{2},$ $......a r^{n-1}$ અને $A, A R, A R^{2}, \ldots, A R^{n-1}$ નાં સંગત પદોના ગુણાકાર દ્વારા મળતાં પદો સમગુણોત્તર શ્રેણી બનાવે છે તેમ સાબિત કરો અને તેનો સામાન્ય ગુણોત્તર શોધો.
It has to be proved that the sequence: $a A, a r A R, a r^{2} A R^{2}, \ldots \ldots a r^{n-1} A R^{n-1},$ forms a $G.P.$
$\frac{{{\rm{ Second}}\,\,{\rm{term }}}}{{{\rm{ First }}\,\,{\rm{term }}}} = \frac{{ar\,AR}}{{a\,A}} = rR$
$\frac{{{\rm{ Third}}\,\,{\rm{ tem }}}}{{{\rm{ Second }}\,\,{\rm{term }}}} = \frac{{a{r^2}\,A{R^2}}}{{ar\,AR}} = rR$
Thus, the above sequence forms a $G.P.$ and the common ratio is $rR.$
બેંકમાં $Rs.$ $500$, $10 \%$ ના વાર્ષિક ચક્રવૃદ્ધિ વ્યાજે મૂકીએ, તો $10$ વર્ષને અંતે કેટલી રકમ મળે ?
ધારો કે $a$ અને $b$ એ બે ભિન્ન ધન વાસ્તવિક સંખ્યાઓ છે. જેનું પ્રથમ પદ $a$ અને ત્રીજું પદ $b$ હોય તેવી એક સમગુણોતર શ્રેણી ($G.P.$)નું $11$ મું પદ તથા જેનું પ્રથમ પદ $a$ અને પાંચમું પદ $b$ હોય તેવી એક બીજી $G.P.$ નું $p$ મું પદ સમાન છે. તો $p=$_______________.
જો સમગુણોતર શ્રેણીનું ત્રીજુ પદએ $4$ હોય તો પ્રથમ પાંચ પદોનો ગુણાકાર મેળવો.
$\sum\limits_{k = 1}^{11} {\left( {2 + {3^k}} \right)} $ ની કિંમત શોધો.
શ્રેણી $\quad 2,2 \sqrt{2}, 4, \ldots$ નું કેટલામું પદ $128$ થાય ?