1.Relation and Function
medium

सिद्ध कीजिए कि वास्तविक संख्याओं के समुच्चय $R$ में $R =\left\{(a, b): a \leq b^{2}\right\},$ द्वारा परिभाषित संबंध $R$, न तो स्वतुल्य है, न सममित हैं और न ही संक्रामक है।

Option A
Option B
Option C
Option D

Solution

$( i)$   $R = \left\{ {(a,b):a \leqslant {b^2}} \right\}$

It can be observed that $\left(\frac{1}{2}, \frac{1}{2}\right) \notin R,$

since, $\frac{1}{2}>\left(\frac{1}{2}\right)^{2}$

$R$ is not reflexive.

Now, $(1,4)\in R$ as $1<42$ But, $4$ is not less than $1^{2}$.

$\therefore $ $(4,1) \notin R$

$\therefore R$ is not symmetric.

Now,

$(3,2),\,(2,1.5) \in R$              $[$ as $3<2^{2}=4 $ and $2<(1.5)^{2}=2.25]$

But, $3 >(1.5)^{2}=2.25$

$\therefore $ $(3,1.5) \notin R$

$\therefore $ $R$ is not transitive.

Hence, $R$ is neither reflexive, nor symmetric, nor transitive.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.