સાબિત કરો કે વાસ્તવિક સંખ્યાઓના ગણ $R$ પર $R =\left\{(a, b): a \leq b^{2}\right\}$ વડે વ્યાખ્યાયિત સંબંધ $S$. સ્વવાચક, સંમિત અને પરંપરિત સંબંધ પૈકી એક પણ નથી.
$( i)$ $R = \left\{ {(a,b):a \leqslant {b^2}} \right\}$
It can be observed that $\left(\frac{1}{2}, \frac{1}{2}\right) \notin R,$
since, $\frac{1}{2}>\left(\frac{1}{2}\right)^{2}$
$R$ is not reflexive.
Now, $(1,4)\in R$ as $1<42$ But, $4$ is not less than $1^{2}$.
$\therefore $ $(4,1) \notin R$
$\therefore R$ is not symmetric.
Now,
$(3,2),\,(2,1.5) \in R$ $[$ as $3<2^{2}=4 $ and $2<(1.5)^{2}=2.25]$
But, $3 >(1.5)^{2}=2.25$
$\therefore $ $(3,1.5) \notin R$
$\therefore $ $R$ is not transitive.
Hence, $R$ is neither reflexive, nor symmetric, nor transitive.
$XY$ સમતલની બધી જ રેખાઓનો ગણ $L$ લો અને $L$ પર સંબંધ $R = \{ \left( {{L_1},{L_2}} \right):$ રેખા ${L_1}$ એ રેખા ${{L_2}}$, ને સમાંતર છે; વડે વ્યાખ્યાયિત છે. સાબિત કરો કે $R$ સામ્ય સંબંધ છે. જે રેખાઓ $y=2 x+4$ સાથે સંબંધ $R$ દ્વારા સંબંધિત હોય તેવી તમામ રેખાઓનો ગણ શોધો. નોંધ : સ્વીકારી લો કે, પ્રત્યેક રેખા પોતાને સમાંતર છે.
ધારો કે $R _{1}=\{( a , b ) \in N \times N :| a - b | \leq 13\}$ અને $R _{2}=\{( a , b ) \in N \times N :| a - b | \neq 13\} .$ તો $N$ પર
સાબિત કરો કે $R$ પર વ્યાખ્યાયિત સંબંધ $R =\{(a, b): a \leq b\},$ એ સ્વવાચક અને પરંપરિત છે, પરંતુ સંમિત સંબંધ નથી.
જે સંમિત અને પરંપરિત હોય પરંતુ સ્વવાચક ના હોય, તેવા સંબંધોનાં ઉદાહરણો આપો.
જો $P$ એ વાસ્તવિક સંખ્યા પરનો સંબંધ છે કે જેથી $P = \left\{ {\left( {a,b} \right):{{\sec }^2}\,a - {{\tan }^2}\,b = 1\,} \right\}$. હોય તો $P$ એ . . . .