Sometimes it is convenient to construct a system of units so that all quantities can be expressed in terms of only one physical quantity. In one such system, dimensions of different quantities are given in terms of a quantity $X$ as follows: [position $]=\left[X^\alpha\right] ;[$ speed $]=\left[X^\beta\right]$; [acceleration $]=\left[X^{ p }\right]$; [linear momentum $]=\left[X^{ q }\right]$; [force $]=\left[X^{ I }\right]$. Then -

$(A)$ $\alpha+p=2 \beta$

$(B)$ $p+q-r=\beta$

$(C)$ $p-q+r=\alpha$

$(D)$ $p+q+r=\beta$

  • [IIT 2020]
  • A

    $A,B$

  • B

    $A,C$

  • C

    $A,D$

  • D

    $B,C$

Similar Questions

If the buoyant force $F$ acting on an object depends on its volume $V$ immersed in a liquid, the density $\rho$ of the liquid and the acceleration due to gravity $g$. The correct expression for $F$ can be

$\int_{}^{} {\frac{{dx}}{{{{(2ax - {x^2})}^{1/2}}}} = {a^n}{{\sin }^{ - 1}}\left( {\frac{x}{a} - 1} \right)} $ in this formula $n =$ _____

The equation of the stationary wave is
$y = 2A\,\,\sin \,\left( {\frac{{2\pi ct}}{\lambda }} \right)\,\cos \,\,\,\left( {\frac{{2\pi x}}{\lambda }} \right)$
Which statement is not true?

If momentum $(P),$ area $(A)$ and time $(T)$ are taken to be the fundamental quantities then the dimensional formula for energy is :

  • [JEE MAIN 2020]

The frequency of vibration of string is given by $\nu = \frac{p}{{2l}}{\left[ {\frac{F}{m}} \right]^{1/2}}$. Here $p$ is number of segments in the string and $l$ is the length. The dimensional formula for $m$ will be