State whether the following are true or false. Justify your answer.

$(i)$ $\cos A$ is the abbreviation used for the cosecant of angle $A$

$(ii)$ cot $A$ is the product of cot and $A$.

$(iii)$ $\sin \theta=\frac{4}{3}$ for some angle $\theta$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(iii)$ Abbreviation used for cosecant of angle $A$ is cosec $A$. And $\cos A$ is the abbreviation used for cosine of angle $A$

Hence, the given statement is false.

$(iv)$ cot $A$ is not the product of cot and $A$. It is the cotangent of $\angle A$.

Hence, the given statement is false.

$(v)$ $\sin \theta=\frac{4}{3}$

We know that in a right-angled triangle,

$\sin \theta=\frac{\text { Side opposite to } \angle \theta}{\text { Hypotenuse }}$

In a right-angled triangle, hypotenuse is always greater than the remaining two sides. Therefore, such value of $\sin \theta$ is not possible.

Hence, the given statement is false

Similar Questions

Given $\sec \theta=\frac{13}{12},$ calculate all other trigonometric ratios.

Evaluate:

$\operatorname{cosec} 31^{\circ}-\sec 59^{\circ}$

State whether the following are true or false. Justify your answer.

$\sin (A+B)=\sin A+\sin B$

$(\sec A+\tan A)(1-\sin A)=..........$

$\sin 2 A=2 \sin A$ is true when $A=$