State whether the following are true or false. Justify your answer.
$(i)$ $\cos A$ is the abbreviation used for the cosecant of angle $A$
$(ii)$ cot $A$ is the product of cot and $A$.
$(iii)$ $\sin \theta=\frac{4}{3}$ for some angle $\theta$.
$(iii)$ Abbreviation used for cosecant of angle $A$ is cosec $A$. And $\cos A$ is the abbreviation used for cosine of angle $A$
Hence, the given statement is false.
$(iv)$ cot $A$ is not the product of cot and $A$. It is the cotangent of $\angle A$.
Hence, the given statement is false.
$(v)$ $\sin \theta=\frac{4}{3}$
We know that in a right-angled triangle,
$\sin \theta=\frac{\text { Side opposite to } \angle \theta}{\text { Hypotenuse }}$
In a right-angled triangle, hypotenuse is always greater than the remaining two sides. Therefore, such value of $\sin \theta$ is not possible.
Hence, the given statement is false
Show that:
$(i)$ $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$
$(ii)$ $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$
Evaluate the following:
$\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
If $\sec 4 A =\operatorname{cosec}\left( A -20^{\circ}\right),$ where $4 A$ is an acute angle, find the value of $A$. (in $^{\circ}$)
Consider $\triangle ACB$, right-angled at $C$, in which $AB =29$ units, $BC =21$ units and $\angle ABC =\theta$ (see $Fig.$). Determine the values of
$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta$
$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta$
$(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)=..........$