State whether the following are true or false. Justify your answer.
$\cot$ $A$ is not defined for $A =0^{\circ}$
$\cot \,A$ is not defined for $A =0^{\circ}$
As $\cot A=\frac{\cos A}{\sin A}$
$\cot 0^{\circ}=\frac{\cos 0^{\circ}}{\sin 0^{\circ}}=\frac{1}{0}=$ undefined
Hence, the given statement is true.
In $\triangle$ $ABC,$ right-angled at $B$, $AB =5\, cm$ and $\angle ACB =30^{\circ}$ (see $Fig.$). Determine the lengths of the sides $BC$ and $AC .$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A}$
In $\triangle ABC ,$ right-angled at $B , AB =24 \,cm , BC =7 \,cm .$ Determine:
$(i)$ $\sin A, \cos A$
$(ii)$ $\sin C, \cos C$
Evaluate:
$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$
Evaluate:
$\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$