State whether the following are true or false. Justify your answer.

$\cot$ $A$ is not defined for $A =0^{\circ}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\cot \,A$ is not defined for $A =0^{\circ}$

As $\cot A=\frac{\cos A}{\sin A}$

$\cot 0^{\circ}=\frac{\cos 0^{\circ}}{\sin 0^{\circ}}=\frac{1}{0}=$ undefined

Hence, the given statement is true.

Similar Questions

In $\triangle$ $ABC,$ right-angled at $B$, $AB =5\, cm$ and $\angle ACB =30^{\circ}$ (see $Fig.$). Determine the lengths of the sides $BC$ and $AC .$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A}$

In $\triangle ABC ,$ right-angled at $B , AB =24 \,cm , BC =7 \,cm .$ Determine:

$(i)$ $\sin A, \cos A$

$(ii)$ $\sin C, \cos C$

Evaluate:

$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$

Evaluate:

$\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$