State with reason whether following functions have inverse $f: \{1,2,3,4\}\rightarrow\{10\}$ with $f =\{(1,10),(2,10),(3,10),(4,10)\}$
$f :\{1,2,3,4\} \rightarrow\{10\}$ defined as $f =\{(1,10),(2,10),(3,10),(4,10)\}$
From the given definition of $f$, we can see that $f$ is a many one function as
$f(1)=f(2)=f(3)=f(4)=10$
$\therefore f$ is not one - one.
Hence, function $f$ does not have an inverse.
Let f : $R \to R$ be defined by $f\left( x \right) = \ln \left( {x + \sqrt {{x^2} + 1} } \right)$ , then number of solutions of $\left| {{f^{ - 1}}\left( x \right)} \right| = {e^{ - \left| x \right|}}$ is
The inverse function of $f(\mathrm{x})=\frac{8^{2 \mathrm{x}}-8^{-2 \mathrm{x}}}{8^{2 \mathrm{x}}+8^{-2 \mathrm{x}}}, \mathrm{x} \in(-1,1),$ is
If $f(x) = 3x - 5$, then ${f^{ - 1}}(x)$
Let $f: N \rightarrow Y $ be a function defined as $f(x)=4 x+3,$ where, $Y =\{y \in N : y=4 x+3$ for some $x \in N \} .$ Show that $f$ is invertible. Find the inverse.
Consider $f: R _{+} \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5 .$ Show that $f$ is invertible with $f^{-1}(y)=\left(\frac{(\sqrt{y+6})-1}{3}\right)$