વિધાન $1:$ $ 10$ સમાન દડાને $4$ ભિન્ન પેટીમાં $^9C_3$ રીતે ગોઠવી શકાય કે જેથી કેાઇપણ પેટી ખાલી ન રહે.

વિધાન $2$: $9$ ભિન્ન જગ્યામાંથી $3$ જગ્યાની પસંદગી $^9C_3$  રીતે થઇ શકે.

  • [AIEEE 2011]
  • A

    વિધાન $- 1$ ખોટું છે. વિધાન$- 2$ સાચું છે.

  • B

    વિધાન $- 1$ સાચું છે. વિધાન $- 2$ ખોટું છે.

  • C

    વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી નથી.

  • D

    વિધાન $- 1$ સાચું છે, વિધાન $- 2$ સાચું છે. વિધાન $- 2$ એ વિધાન$- 1$ ની સાચી સમજૂતી છે.

Similar Questions

ધારોકે ગણ $A$ અને $B$ ના ધટકોની સંખ્યા અનુક્રમે પાંચ અને બે છે.તો આછામાં ઓછા $3$ અને વધુમાં વધુ $6$ ધટકો ધરાવતા $A \times B$ ના ઉપગણોની સંખ્યા $.........$ છે.

  • [JEE MAIN 2023]

ક્રિકેટના $13$ ખેલાડી પૈકી $4$ બોલર છે. $11$ ખેલાાડીઓની ટીમમાં ઓછામાં ઓછા $2$ બોલર હોય તેવી ટીમ.....રીતે પસંદ કરી શકાય.

જો $\left( {_{r - 1}^{\,\,n}} \right) = 36,\left( {_r^n} \right) = 84$ અને $\,\left( {_{r + 1}^{\,\,n}} \right) = 126\,$ હોય , તો  $r\, = \,\,..........$

$21$ ચોક્કસ સફરજનનને $2$ વિદ્યાર્થીઓમાં કેટલી રીતે વહેંચી શકાય કે જેથી દરેક વિદ્યાર્થીઓને ઓછામાં ઓછા $2$ સફરજન મળે.

  • [JEE MAIN 2024]

$1, 2, 0, 2, 4, 2, 4$ અંકોનો ઉપયોગ કરીને $1000000$ થી મોટી કેટલી સંખ્યાઓ બનાવી શકાય ?