ધારોકે $\sum \limits_{r=0}^{2023} r^{2023} C_r=2023 \times \alpha \times 2^{2022}$, તો $\alpha$ નું મૂલ્ય $............$ છે.
$1011$
$1013$
$1012$
$1014$
ધારો કે $(1+x)^{10}$ ના વિસ્તરણમાં $x^{ r }$ નો દ્વિપદ્દી સહગગણક $C _{ r }$ વડે દર્શાવાય છે. જો $\alpha, \beta \in R$ માટે, $C _{1}+3 \cdot 2 C _{2}+5 \cdot 3 C _{3}+\ldots 10$ પદો સુધી = $\frac{\alpha \times 2^{11}}{2^{\beta}-1}\left(C_{0}+\frac{C_{1}}{2}+\frac{C_{2}}{3}+\ldots 10\right.$ પદો સુધી $)$, તો $\alpha+\beta$ ની કિમત ....... છે.
જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^n}$, તો $\frac{{{C_1}}}{{{C_0}}} + \frac{{2{C_2}}}{{{C_1}}} + \frac{{3{C_3}}}{{{C_2}}} + .... + \frac{{n{C_n}}}{{{C_{n - 1}}}} = $
જો $\sum_{r=1}^{10} r !\left( r ^{3}+6 r ^{2}+2 r +5\right)=\alpha(11 !),$ તો $\alpha$ ની કિમંત મેળવો.
If $\sum\limits_{ k =1}^{31}\left({ }^{31} C _{ k }\right)\left({ }^{31} C _{ k -1}\right)-\sum\limits_{ k =1}^{30}\left({ }^{30} C _{ k }\right)\left({ }^{30} C _{ k -1}\right)=\frac{\alpha(60 !)}{(30 !)(31 !)}$ જ્યાં $\alpha \in R$, હોય, તો $16 \alpha$ નું મૂલ્ય...........છે
સંખ્યા $111......1$ ($91$ વખત) એ . . .