Sum of the first $p, q$ and $r$ terms of an $A.P.$ are $a, b$ and $c,$ respectively. Prove that $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
Let $a_{1}$ and $d$ be the first term and the common difference of the $A.P.$ respectively According to the given information,
$S_{p}=\frac{p}{2}\left[2 a_{1}+(p-1) d\right]=a$ .........$(1)$
$\Rightarrow 2 a_{1}+(p-1) d=\frac{2 a}{p}$
$S_{q}=\frac{q}{2}\left[2 a_{1}+(q-1) d\right]=b$ ............$(2)$
$S_{r}=\frac{r}{2}\left[2 a_{1}+(r-1) d\right]=c$
$\Rightarrow 2 a_{1}+(r-1) d=\frac{2 c}{r}$ ............$(3)$
Subtracting $(2)$ from $(1),$ we obtain
$(p-1) d-(q-1) d=\frac{2 a}{p}-\frac{2 b}{q}$
$\Rightarrow d(p-1-q+1)=\frac{2 a q-2 b p}{p q}$
$\Rightarrow d(p-q)=\frac{2 a q-2 b p}{p q}$
$\Rightarrow d=\frac{2(a q-b p)}{p q(p-q)}$ ..........$(4)$
Subtracting $(3)$ from $(2),$ we obtain
$(q-1) d-(r-1) d=\frac{2 b}{q}-\frac{2 c}{r}$
$\Rightarrow d(q-1-r+1)=\frac{2 b}{q}-\frac{2 c}{r}$
$\Rightarrow d(q-r)=\frac{2 b r-2 q c}{q r}$
$\Rightarrow d=\frac{2(b r-q c)}{q r(q-r)}$ ...........$(5)$
Equating both the values of $d$ obtained in $(4)$ and $(5),$ we obtain
$\frac{a q-b p}{p q(p-q)}=\frac{b r-q c}{q r(q-r)}$
$\Rightarrow q r(q-r)(a q-b q)=p q(q-q)(b r-q c)$
$\Rightarrow r(a q-b p)(q-r)=p(b r-q c)(p-q)$
$\Rightarrow(a q r-b p r)(q-r)=(b p r-p q c)(p-q)$
Dividing both sides by $pqr,$ we obtain
$\left(\frac{a}{p}-\frac{b}{q}\right)(q-r)=\left(\frac{b}{q}-\frac{c}{r}\right)(p-q)$
$\Rightarrow \frac{a}{p}(q-r)-\frac{b}{q}(q-r+p-q)+\frac{c}{r}(p-q)=0$
$\Rightarrow \frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
Thus, the given result is proved.
Let $a_1 , a_2, a_3, .... , a_n$, be in $A.P$. If $a_3 + a_7 + a_{11} + a_{15} = 72$ , then the sum of its first $17$ terms is equal to
The difference between any two consecutive interior angles of a polygon is $5^{\circ}$ If the smallest angle is $120^{\circ},$ find the number of the sides of the polygon.
If $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ are in $A.P.,$ prove that $a, b, c$ are in $A.P.$
The sums of $n$ terms of three $A.P.'s$ whose first term is $1$ and common differences are $1, 2, 3$ are ${S_1},\;{S_2},\;{S_3}$ respectively. The true relation is
If the sum of the first $n$ terms of a series be $5{n^2} + 2n$, then its second term is