Sum of the first $p, q$ and $r$ terms of an $A.P.$ are $a, b$ and $c,$ respectively. Prove that $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
Let $a_{1}$ and $d$ be the first term and the common difference of the $A.P.$ respectively According to the given information,
$S_{p}=\frac{p}{2}\left[2 a_{1}+(p-1) d\right]=a$ .........$(1)$
$\Rightarrow 2 a_{1}+(p-1) d=\frac{2 a}{p}$
$S_{q}=\frac{q}{2}\left[2 a_{1}+(q-1) d\right]=b$ ............$(2)$
$S_{r}=\frac{r}{2}\left[2 a_{1}+(r-1) d\right]=c$
$\Rightarrow 2 a_{1}+(r-1) d=\frac{2 c}{r}$ ............$(3)$
Subtracting $(2)$ from $(1),$ we obtain
$(p-1) d-(q-1) d=\frac{2 a}{p}-\frac{2 b}{q}$
$\Rightarrow d(p-1-q+1)=\frac{2 a q-2 b p}{p q}$
$\Rightarrow d(p-q)=\frac{2 a q-2 b p}{p q}$
$\Rightarrow d=\frac{2(a q-b p)}{p q(p-q)}$ ..........$(4)$
Subtracting $(3)$ from $(2),$ we obtain
$(q-1) d-(r-1) d=\frac{2 b}{q}-\frac{2 c}{r}$
$\Rightarrow d(q-1-r+1)=\frac{2 b}{q}-\frac{2 c}{r}$
$\Rightarrow d(q-r)=\frac{2 b r-2 q c}{q r}$
$\Rightarrow d=\frac{2(b r-q c)}{q r(q-r)}$ ...........$(5)$
Equating both the values of $d$ obtained in $(4)$ and $(5),$ we obtain
$\frac{a q-b p}{p q(p-q)}=\frac{b r-q c}{q r(q-r)}$
$\Rightarrow q r(q-r)(a q-b q)=p q(q-q)(b r-q c)$
$\Rightarrow r(a q-b p)(q-r)=p(b r-q c)(p-q)$
$\Rightarrow(a q r-b p r)(q-r)=(b p r-p q c)(p-q)$
Dividing both sides by $pqr,$ we obtain
$\left(\frac{a}{p}-\frac{b}{q}\right)(q-r)=\left(\frac{b}{q}-\frac{c}{r}\right)(p-q)$
$\Rightarrow \frac{a}{p}(q-r)-\frac{b}{q}(q-r+p-q)+\frac{c}{r}(p-q)=0$
$\Rightarrow \frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
Thus, the given result is proved.
If the sum of three numbers in $A.P.,$ is $24$ and their product is $440,$ find the numbers.
The interior angles of a polygon are in $A.P.$ If the smallest angle be ${120^o}$ and the common difference be $5^o$, then the number of sides is
Let $x_n, y_n, z_n, w_n$ denotes $n^{th}$ terms of four different arithmatic progressions with positive terms. If $x_4 + y_4 + z_4 + w_4 = 8$ and $x_{10} + y_{10} + z_{10} + w_{10} = 20,$ then maximum value of $x_{20}.y_{20}.z_{20}.w_{20}$ is-
The sum of the first $20$ terms common between the series $3 +7 + 1 1 + 15+ ... ......$ and $1 +6+ 11 + 16+ ......$, is
If $a,\;b,\;c$ are in $A.P.$, then $\frac{1}{{bc}},\;\frac{1}{{ca}},\;\frac{1}{{ab}}$ will be in