Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=n(n+2)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$a_{n}=n(n+2)$

Substituting $n=1,2,3,4$ and $5,$ we obtain

$a_{1}=1(1+2)=3$

$a_{2}=2(2+2)=8$

$a_{3}=3(3+2)=15$

$a_{4}=4(4+2)=24$

$a_{5}=5(5+2)=35$

Therefore, the required terms are $3,8,15,24$ and $35 .$

Similar Questions

If the sum of $n$ terms of an $A.P$. is $2{n^2} + 5n$, then the ${n^{th}}$ term will be

If ${\log _3}2,\;{\log _3}({2^x} - 5)$ and ${\log _3}\left( {{2^x} - \frac{7}{2}} \right)$ are in $A.P.$, then $x$ is equal to

  • [IIT 1990]

Write the first five terms of the following sequence and obtain the corresponding series :

$a_{1}=3, a_{n}=3 a_{n-1}+2$ for all $n\,>\,1$

If $n$ is the smallest natural number such that $n+2 n+3 n+\ldots+99 n$ is a perfect square, then the number of digits of $n^2$ is

  • [KVPY 2015]

Let the sum of the first $n$ terms of a non-constant $A.P., a_1, a_2, a_3, ……$ be $50\,n\, + \,\frac{{n\,(n\, - 7)}}{2}A,$ where $A$ is a constant. If $d$ is the common difference of this $A.P.,$ then the ordered pair $(d,a_{50})$ is equal to

  • [JEE MAIN 2019]