If $19^{th}$ terms of non -zero $A.P.$ is zero, then its ($49^{th}$ term) : ($29^{th}$ term) is
If ${S_n}$ denotes the sum of $n$ terms of an arithmetic progression, then the value of $({S_{2n}} - {S_n})$ is equal to
If $\log _{3} 2, \log _{3}\left(2^{x}-5\right), \log _{3}\left(2^{x}-\frac{7}{2}\right)$ are in an arithmetic progression, then the value of $x$ is equal to $.....$
If $\log 2,\;\log ({2^n} - 1)$ and $\log ({2^n} + 3)$ are in $A.P.$, then $n =$