माना $D = \left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right|$ and $D' = \left| {\,\begin{array}{*{20}{c}}{{a_1} + p{b_1}}&{{b_1} + q{c_1}}&{{c_1} + r{a_1}}\\{{a_2} + p{b_2}}&{{b_2} + q{c_2}}&{{c_2} + r{a_2}}\\{{a_3} + p{b_3}}&{{b_3} + q{c_3}}&{{c_3} + r{a_3}}\end{array}\,} \right|$, तो
$D' = D$
$D' = D(1 - pqr)$
$D' = D(1 + p + q + r)$
$D' = D(1 + pqr)$
$\Delta=\left|\begin{array}{lll}3 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 2 & 3\end{array}\right|$ का मान ज्ञात कीजिए।
यदि रैखिक समीकरण निकाय $x-2 y+k z=1$, $2 x+y+z=2$, $3 x-y-k z=3$ का एक हल $( x , y , z ), z \neq 0$, है, तो $( x , y )$ जिस रेखा पर स्थित है, उसका समीकरण है
यदि $B$ एक ऐसा $3 \times 3$ आव्यूह है कि $B ^{2}=0$ है, तो det. $\left[( I + B )^{50}-50 B \right]$ बराबर है
माना समीकरण निकाय
$x+y+\alpha z=2$
$3 x+y+z=4$
$x+2 z=1$
का अद्वितीय हल $\left( x ^*, y ^*, z ^*\right)$ है यदि $\left(\alpha, x ^*\right)$, $\left( y ^*, \alpha\right)$ तथा $\left( x ^*,- y ^*\right)$ संरेखीय बिन्दु हो, तो $\alpha$ की सभी संभव मानों का निरपेक्ष मान होगा :
समीकरण के निकाय ${x_1} + 2{x_2} + 3{x_3} = a2{x_1} + 3{x_2} + {x_3} = $ $b3{x_1} + {x_2} + 2{x_3} = c$ का हल होगा