ધારો કે $x$ અને $y$ એ ધન સંખ્યાઓ છે કે જેથી $xy = \frac{1}{9};\,x\left( {y + 1} \right) = \frac{7}{9};\,y\left( {x + 1} \right) = \frac{5}{{18}}$ થાય તો $(x + 1) (y + 1)$ ની કિમત મેળવો
$\frac {8}{9}$
$\frac {16}{9}$
$\frac {10}{9}$
$\frac {35}{18}$
$m$ ના કયા મૂલ્ય માટે સમીકરણ $y^2 + 2xy + 2x + my - 3$ ને બે સંમેય અવયવ ઉકેલી શકાય ?
જો સમીકરણનો $ax^3 + bx + c$ નો એક ઘટક $x^2 + px + 1$ હોય, તો.....
જો $\alpha, \beta$ એ સમીકરણ $x^{2}+5 \sqrt{2} x+10=0, \alpha\,>\,\beta$ ના બીજ છે અને દરેક ધન પૃણાંક $n$ માટે $P_{n}=\alpha^{n}-\beta^{n}$ હોય તો $\left(\frac{P_{17} P_{20}+5 \sqrt{2} P_{11} P_{19}}{P_{18} P_{19}+5 \sqrt{2} P_{18}^{2}}\right)$ ની કિમંત મેળવો.
જો $\frac{{2x}}{{2{x^2} + 5x + 2}}$>$\frac{1}{{x + 1}}$ ,તો . . . .
ધારો કે $S$ એ સમીકરણ $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right| $ ના વાસ્તવિક બીજનો ગણ હોય તો $\mathrm{S}$ એ .. . .