$\mathrm{k}(\mathrm{k} \neq 0 )$ ની બધીજ પૂર્ણાંક સંખ્યાનો સરવાળો મેળવો કે જેથી $x$ નું સમીકરણ $\frac{2}{x-1}-\frac{1}{x-2}=\frac{2}{k}$ ને એકપણ વાસ્તવિક બીજ ન હોય .
$95$
$76$
$66$
$70$
જો $\mathrm{a}=\max _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ અને $\beta=\min _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ આપેલ છે અને જો દ્રીઘાત સમીકરણ $8 x^{2}+b x+c=0$ ના બીજો $\alpha^{1 / 5}$ અને $\beta^{1 / 5}$, હોય તો $c-b$ ની કિમંત મેળવો.
ધારો કે $S$ એ સમીકરણ $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right| $ ના વાસ્તવિક બીજનો ગણ હોય તો $\mathrm{S}$ એ .. . .
જો $\alpha ,\beta$ એ સમીકરણ $x^2 -ax + b = 0$ ના ઉકેલો હોય અને $\alpha^n + \beta^n = V_n$, હોય તો
જો $\alpha,\beta,\gamma, \delta$ એ સમીકરણ $x^4-100x^3+2x^2+4x+10 = 0$ ના બીજો હોય તો $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$ ની કિમત મેળવો
સમીકરણ $x^{7}-7 x-2=0$ નાં ભિન્ન વાસ્તવિક બીજોની સંખ્યા ..... છે