माना कि एक समान्तर श्रेणी (arithmetic progression ($A.P.$)) के सभी पद धन पूर्णांक हैं । इस समान्तर श्रेणी में यदि पहले सात ($7$) पदों के योग और पहले ग्यारह ($11$) पदों के योग का अनुपात $6: 11$ है तथा सातवाँ पद $130$ और $140$ के बीच मं स्थित है, तब इस समान्तर श्रेणी के सार्व अन्तर (common difference) का मान है
$6$
$7$
$8$
$9$
यदि $a, b, c, d$ गुणोत्तर श्रेणी में हैं, तो सिद्ध कीजिए कि $\left(a^{n}+b^{n}\right),\left(b^{n}+c^{n}\right),\left(c^{n}+d^{n}\right)$ गुणोत्तर श्रेणी में हैं।
संख्याओं के दो समूह $a,\;2b$ व $2a,\;b$, (जहाँ $a,\;b \in R$) के बीच $n$ समान्तर माध्य स्थापित किये गये हैं। यदि इन संख्याओं के दोनों समूहों के लिये $m$ वाँ समान्तर माध्य बराबर हो, तो $a:b$ है
अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है
$a_{n}=n(n+2)$
ऐसी $6$ संख्याएँ ज्ञात कीजिए जिनको $3$ और $24$ के बीच रखने पर प्राप्त अनुक्रम एक समांतर श्रेणी बन जाए।
यदि दो समान्तर श्रेणियाँ के $n$ वें पद क्रमश: $3n + 8$ व $7n + 15$ हों, तो उनके $12$ वें पदों का अनुपात होगा