10-2. Parabola, Ellipse, Hyperbola
hard

અતિવલય $4{x^2} - {y^2} = 36$ ને બિંદુ $P$ અને $Q$ આગળ સ્પર્શકો દોરવામાં આવે છે. જો આ સ્પર્શકો બિંદુ $T\left( {0,3} \right)$ આગળ છેદે તો  $\Delta PTQ$ નું ક્ષેત્રફળ . . . . . .છે. .

A

$54\sqrt 3 $

B

$60\sqrt 3 $

C

$36\sqrt 5 $

D

$45$$\sqrt 5 $

(JEE MAIN-2018)

Solution

(4) Here equation of hyperbola is $\frac{{{x^2}}}{9} – \frac{{{y^2}}}{{36}} = 1$

Now, $PQ$ is the chord of contant 

$\therefore $ Equation of $PQ$ is $\,:\frac{{x\left( 0 \right)}}{9} – \frac{{y\left( 3 \right)}}{{36}} = 1$

$ \Rightarrow y =  – 12$

$\therefore $ Area of $\Delta PQT = \frac{1}{2} \times TR \times PQ$

$\because $ $P \equiv \left( {3\sqrt 5 , – 12} \right)\,\,\,\,\,\,\therefore TR = 3 + 12 = 15$

$\therefore $ Area of $\Delta PQT = \frac{1}{2} \times 15 \times 6\sqrt 5  = 45\sqrt 5 $ sq.units

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.