શ્રેણીઓ $S _1=3+7+11+15+19+\ldots$ અને $S _2=1+6+11+16+21+\ldots$ નું સામાન્ય $8$મું પદ $............$ છે.
$150$
$151$
$152$
$153$
સમાંતર શ્રેણીનું $n$ મું પદ $3n - 1$ હોય, તો તેના પ્રથમ પાંચ પદોનો સરવાળો....... છે.
જો કોઈ વાસ્તવિક $x$ માટે $1, \log _{10}\left(4^{x}-2\right)$ અને $\log _{10}\left(4^{x}+\frac{18}{5}\right)$ એ સમાંતર શ્રેણીમાં હોય તો $\left|\begin{array}{ccc}2\left(x-\frac{1}{2}\right) & x-1 & x^{2} \\ 1 & 0 & x \\ x & 1 & 0\end{array}\right|$ ની કિમંત મેળવો.
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં ${a_7}$ પદ શોધો : $a_{n}=\frac{n^{2}}{2^{n}}$
$1 + 3 + 5 + 7 + …n$ પદ સુધી =…..
$a$ અને $b$ બે સંખ્યાઓ છે. $A$ સમાંતર મધ્યક અને $S$ એ $a $ અને $b$ વચ્ચેના $n$ સમાંતર મધ્યકોનો સરવાળો દર્શાવે તો $S/A$ કોના ઉપર આધાર રાખે છે ?