શ્રેણીઓ $S _1=3+7+11+15+19+\ldots$ અને $S _2=1+6+11+16+21+\ldots$ નું સામાન્ય $8$મું પદ $............$ છે.
$150$
$151$
$152$
$153$
$T _8=11+(8-1) \times 20$
$=11+140=151$
ધારો કે ${a_1},{a_2},\;.\;.\;.\;.,{a_{49}}$ સમાંતર શ્રેણીમાં છે તથા $\mathop \sum \limits_{k = 0}^{12} {a_{4k + 1}} = 416$ અને ${a_9} + {a_{43}} = 66$. જો $a_1^2 + a_2^2 + \ldots + a_{17}^2 = 140m,$ તો $m = \;\;..\;.\;.\;.\;$
જો એક વધતી સમાંતર શ્રેણી $b _{1}, b _{2}, b _{3}, \ldots b _{11}$ નો વિચરણ $90$ હોય તો આ સમાંતર શ્રેણીનો સામાન્ય તફાવત શોધો
એક સમાંતર શ્રેણીનાં પ્રથમ $m$ અને $n$ પદોના સરવાળાના ગુણોત્તર $m^{2}: n^{2}$ છે. સાબિત કરો કે $m$ માં તથા $n$ માં પદોનો ગુણોત્તર $(2 m-1):(2 n-1)$ થાય.
આપેલ સમાંતર શ્રેણીમાં બધા પદો ધન પૂર્ણાંક સંખ્યા છે તથા પહેલા નવ પદોનો સરવાળો $200$ કરતાં વધારે અને $220$ કરતાં ઓછો છે. જો શ્રેણીનું બીજું પદ $12$ હોય તો ચોથું પદ મેળવો.
$1.3.5, 3.5.7, 5.7.9, …… $ શ્રેણીના પ્રથમ $n$ પદોનો સમાંતર મધ્યક કેટલો થાય ?
Confusing about what to choose? Our team will schedule a demo shortly.