$\frac{{1 + \sqrt 3 \,i}}{{\sqrt 3 - i}}$ નો કોણાંક મેળવો.

  • A

    $0$

  • B

    $\pi /6$

  • C

    $\pi /3$

  • D

    $\pi /2$

Similar Questions

જો $z_1$ અને $z_2$ એ બે સંકર સંખ્યાઓ છે કે જેથી $z_1^2 + z_2^2 = 5,$ હોય તો ${\left( {{z_1} - {{\bar z}_1}} \right)^2} + {\left( {{z_2} - {{\bar z}_2}} \right)^2}$ ની કિમત મેળવો 

જો ${z_1}$ અને ${z_2}$ બે સંકર સંખ્યા છે કે જેથી $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|$ તો arg $({z_1}) - $arg $({z_2})$ = . . . ..

  • [IIT 1987]

જો $\frac{\pi }{2} < \alpha  < \frac{3}{2}\pi $ ,હોય તો $(1 + cos\, 2\alpha ) + i\, sin\, 2\alpha $ નો માનક અને કોણાંક અનુક્રમે ................... થાય 

જો $z$ એ સંકર સંખ્યા હોય, તો $(\overline {{z^{ - 1}}} )(\overline z ) = $

$\mid 1$ - $\left.\mathrm{i}\right|^x=2^x$ ના ઉકેલોની સંખ્યા $\alpha$ અને $\beta=\left(\frac{|z|}{\arg (\mathrm{z})}\right)$, જ્યાં $\mathrm{z}=\frac{\pi}{4}(1+\mathrm{i})^4\left(\frac{1-\sqrt{\pi} \mathrm{i}}{\sqrt{\pi}+\mathrm{i}}+\frac{\sqrt{\pi}-\mathrm{i}}{1+\sqrt{\pi} \mathrm{i}}\right), \mathrm{i}=\sqrt{-1}$ તો $(\alpha, \beta)$ નું $4 x-3 y=7$ થી અંતર મેળવો.

  • [JEE MAIN 2024]