सदिश $(\overrightarrow{ A })$ तथा $(\overrightarrow{ A }-\overrightarrow{ B })$ के बीच कोण है।
$\tan ^{-1}\left(\frac{-\frac{{B}}{2}}{{A}-{B} \frac{\sqrt{3}}{2}}\right)$
$\tan ^{-1}\left(\frac{{A}}{0.7 {B}}\right)$
$\tan ^{-1}\left(\frac{\sqrt{3} {B}}{2 {A}-{B}}\right)$
$\tan ^{-1}\left(\frac{{B} \cos \theta}{{A}-{B} \sin \theta}\right)$
माना दो अशून्य सदिशों $\mathop A\limits^ \to $ व $\mathop B\limits^ \to $ के बीच कोण $120^°$ है तथा इनका परिणामी $\mathop C\limits^ \to $ है तो
सदिशों $5i + 8j$ तथा $2i + 7j$ को परस्पर जोड़ा जाता है। इन सदिशों के योग का परिमाण है
तीन लड़कियाँ $200\, m$ त्रिज्या वाली वृत्तीय बर्फीली सतह पर स्केटिंग कर रही हैं । वे सतह के किनारे के बिंदु $P$ से स्केटिंग शुरू करती हैं तथा $P$ के व्यासीय विपरीत बिंदु $Q$ पर विभिन्न पथों से होकर पहुँचती हैं जैसा कि चित्र में दिखाया गया है । प्रत्येक लड़की के विस्थापन सदिश का परिमाण कितना है ? किस लड़की के लिए यह वास्तव में स्केट किए गए पथ की लंबाई के बराबर है ।
दिया है $\mathop A\limits^ \to + \mathop B\limits^ \to + \mathop C\limits^ \to $ $= 0$, तीन में से दो सदिश परिमाण में समान हैं तथा तीसरे सदिश का परिमाण पहले दो समान परिमाण वाले सदिशों में से किसी एक का $\sqrt 2 $ गुना है तो सदिशों के मध्य कोण है
समान परिमाण $F$ वाले दो बल एक वस्तु पर क्रिया करते हैं और परिणामी $\frac{F}{3}$ है। इन दोनों बलों के बीच का कोण होगा