The centre of the ellipse$\frac{{{{(x + y - 2)}^2}}}{9} + \frac{{{{(x - y)}^2}}}{{16}} = 1$ is

  • A

    $(0, 0)$

  • B

    $(1, 1)$

  • C

    $(1, 0)$

  • D

    $(0, 1)$

Similar Questions

The eccentricity of an ellipse whose length of latus rectum is equal to distance between its foci, is

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$

If the line $x\cos \alpha + y\sin \alpha = p$ be normal to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, then

Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ be an ellipse, whose eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is $\sqrt{14}$. Then the square of the eccentricity of $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is :

  • [JEE MAIN 2024]

Which of the following points lies on the locus of the foot of perpendicular drawn upon any tangent to the ellipse, $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ from any of its foci?

  • [JEE MAIN 2020]