वृत्त ${x^2} + {y^2} + 4x + 6y + 3 = 0$ व $2({x^2} + {y^2}) + 6x + 4y + C = 0$ लम्बवत् काटेंगे यदि $C =$
$4$
$18$
$12$
$16$
वत्त, $x ^{2}+ y ^{2}-2 x -6 y +6=0$ का कोई एक व्यास, किसी और वत्त ' $C$ ' की एक जीवा है। यदि वत्त ' $C$ ' का केन्द्र $(2,1)$ है, तो इस की त्रिज्या बराबर है
वृत्त ${x^2} + {y^2} - 10x + 16 = 0$ और ${x^2} + {y^2} = {r^2}$ एक दूसरे को दो अलग-अलग बिन्दुओं पर प्रतिच्छेद करेंगे यदि
वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$, वृत्त ${x^2} + {y^2} + 2g'x + 2f'y + c' = 0$ की परिधि को समद्विभाजित करेगा यदि
वृत्त ${x^2} + {y^2} + 16x - 24y + 183 = 0$ का दर्पण रेखा $4x + 7y + 13 = 0$ से प्रतिबिम्ब है
वृत्तों $3{x^2} + 3{y^2} - 7x + 8y + 11 = 0$ तथा ${x^2} + {y^2} - 3x - 4y + 5 = 0$ का मूलाक्ष है