7.Binomial Theorem
hard

 $(1+x)^{500}+x(1+x)^{499}+x^2(1+x)^{498}+\ldots . .+x^{500}$ માં $x ^{301}$નો સહગુણક $........$ છે.

A

${ }^{501} C _{302}$

B

${ }^{500} C _{301}$

C

${ }^{500} C _{300}$

D

${ }^{501} C _{200}$

(JEE MAIN-2023)

Solution

$(1+x)^{500}+x(1+x)^{499}+x^2(1+x)^{498}+\ldots .+x^{500}$

$=(1+x)^{500} \cdot\left\{\frac{1-\left(\frac{x}{1+x}\right)^{501}}{1-\frac{x}{1+x}}\right\}$

$=(1+x)^{500} \frac{\left((1+x)^{501}-x^{501}\right)}{(1+x)^{501}} \cdot(1+x)$

$=(1+x)^{501}-x^{501}$

Coefficient of $x^{301}$ in $(1+x)^{501}-x^{501}$ is given by ${ }^{501} C _{301}={ }^{501} C _{200}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.