$(1+x)^{500}+x(1+x)^{499}+x^2(1+x)^{498}+\ldots . .+x^{500}$ માં $x ^{301}$નો સહગુણક $........$ છે.
${ }^{501} C _{302}$
${ }^{500} C _{301}$
${ }^{500} C _{300}$
${ }^{501} C _{200}$
જો ${ }^{20} \mathrm{C}_{\mathrm{r}}$ એ $(1+x)^{20}$ ના વિસ્તરણમાં $\mathrm{x}^{\mathrm{r}}$ નો સહગુણક દર્શાવે છે તો $\sum_{r=0}^{20} r^{2}\,\,{ }^{20} C_{r}$ ની કિમંત મેળવો.
ધારો કે $\mathrm{a}=1+\frac{{ }^2 \mathrm{C}_2}{3!}+\frac{{ }^3 \mathrm{C}_2}{4!}+\frac{{ }^4 \mathrm{C}_2}{5!}+\ldots$, $\mathrm{b}=1+\frac{{ }^1 \mathrm{C}_0+{ }^1 \mathrm{C}_1}{1!}+\frac{{ }^2 \mathrm{C}_0+{ }^2 \mathrm{C}_1+{ }^2 \mathrm{C}_2}{2!}+\frac{{ }^3 \mathrm{C}_0+{ }^3 \mathrm{C}_1+{ }^3 \mathrm{C}_2+{ }^3 \mathrm{C}_3}{3!}+\ldots .$ તો $\frac{2 b}{a^2}=$...........
${\sum\limits_{r = 1}^{19} {\frac{{{}^{20}{C_{r + 1}}\left( { - 1} \right)}}{{{2^{2r + 1}}}}} ^r}$ ની કિમત મેળવો
જો ${(x - 2y + 3z)^n}$ ના વિસ્તરણમાં પદની સંખ્યા $45$ હોય , તો $n= $. . .
ધારો કે $\alpha=\sum_{r=0}^n\left(4 r^2+2 r+1\right)^n C_r$ અને $\beta=\left(\sum_{r=0}^n \frac{{ }^n C_r}{r+1}\right)+\frac{1}{n+1} \cdot$ જો $140 < \frac{2 \alpha}{\beta}<281$ તો $n$ નું મૂલ્ય .......... છે.