$\frac{{{C_1}}}{2} + \frac{{{C_3}}}{4} + \frac{{{C_5}}}{6} + .....$ =. .. .
$\frac{{{2^n} - 1}}{{n + 1}}$
$n{.2^n}$
$\frac{{{2^n}}}{n}$
$\frac{{{2^n} + 1}}{{n + 1}}$
બહુપદી $(x-1) (x-2^1) (x-2^2) .... (x-2^{19})$ માં $x^{19}$ નો સહગુણક મેળવો
$(1 +x)^{101} (1 +x^2 - x)^{100}$ ના વિસ્તરણમાં પદની સંખ્યા મેળવો.
${(x + a)^n}$ ના વિસ્તરણમાં , $A$ એ અયુગ્મ પદનો સરવાળો દર્શાવે છે અને $B$ એ યુગ્મ પદનો સરવાળો દર્શાવે છે તો . . . ..
$\frac{1}{1 ! 50 !}+\frac{1}{3 ! 48 !}+\frac{1}{5 ! 46 !}+\ldots .+\frac{1}{49 ! 2 !}+\frac{1}{51 ! 1 !}$ ની કિમંત મેળવો.
જો ${S_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $ અને ${t_n} = \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $, તો $\frac{{{t_n}}}{{{S_n}}}$ = . . .