$\sum\limits_{m = 0}^{100} {{\,^{100}}{C_m}{{(x - 3)}^{100 - m}}} {.2^m}$ के विस्तार में ${x^{53}}$ का गुणांक है
$^{100}{C_{47}}$
$^{100}{C_{53}}$
${ - ^{100}}{C_{53}}$
${ - ^{100}}{C_{100}}$
माना $\left( x +\frac{ a }{ x ^{2}}\right)^{ n }, x \neq 0$, के प्रसार में तीसरे, चौथे तथा पाँचवें पदों के गुणांक $12: 8: 3$ के अनुपात में है। तो इस प्रसार में $x$ से स्वतंत्र पद है ......... |
${\left( {x - \frac{1}{x}} \right)^6}$ के विस्तार में $x$ से स्वतंत्र पद है
यदि ${\left( {2 + \frac{x}{3}} \right)^n}$ में ${x^7}$ तथा ${x^8}$ के गुणांक बराबर हैं, तब $n$ है
यदि ${\left( {{x^2} + \frac{k}{x}} \right)^5}$ के विस्तार में $x $ का गुणांक $270$ हो, तो $k =$
यदि $\left(\alpha x^3+\frac{1}{\beta x}\right)^{11}$ के प्रसार में $x^9$ का गुणांक एवं $\left(\alpha \mathrm{x}-\frac{1}{\beta \mathrm{x}^3}\right)^{11}$ के प्रसार में $\mathrm{x}^{-9}$ का गुणांक बराबर हैं तब $(\alpha \beta)^2$ बराबर है____________.