7.Binomial Theorem
easy

${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ ના વિસ્તરણમાં ${x^{39}}$ નો સહગુણક મેળવો.

A

$-455$

B

$-105$

C

$105$

D

$455$

Solution

(a) ${T_{r + 1}} = \,{}^{15}{C_r}{({x^4})^{15 – r}}{( – 1/{x^3})^r}$= ${( – 1)^r}\,\,{}^{15}{C_r}{(x)^{60 – 7r}}$

For coefficient of ${x^{39}}$, $60 – 7r = 39$

$\Rightarrow r = 3$

$\therefore {T_4} = {}^{15}{C_3}{({x^4})^{12}}{( – 1/{x^3})^3}$= $ – 455\,{x^{39}}$

Hence the required coefficient is $-455$.
Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.