7.Binomial Theorem
easy

${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^9}$ के विस्तार में ${x^{ - 9}}$ का गुणांक होगा  

A

$512$

B

$-512$

C

$521$

D

$251$

Solution

यहाँ ${T_{r + 1}} = {}^{\rm{9}}{C_r}{\left( {\frac{{{x^2}}}{2}} \right)^{9 – r}}{\left( {\frac{{ – 2}}{x}} \right)^r}$

= ${}^9{C_r}\frac{{{x^{18 – 3r}}{{( – 2)}^r}}}{{{2^{9 – r}}}},$ ${x^{ – 9}}$ के गुणांक के लिए $18 -3r = -9$ अर्थात् $r = 9$ ${x^{ – 9}}$ का गुणांक

= ${}^9{C_9}\frac{{{{( – 2)}^9}}}{{{2^0}}} =  – {2^9} =  – 512$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.