${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^9}$ के विस्तार में ${x^{ - 9}}$ का गुणांक होगा
$512$
$-512$
$521$
$251$
$\left(3^{\frac{1}{2}}+5^{\frac{1}{4}}\right)^{680}$ के प्रसार में पूर्णांक पदों की संख्या है
यदि सभी $x \in R$ के लिए $1+x^{4}+x^{5}=\sum_{ i =0}^{5} a _{ i }(1+x)^{ i }$ है, तो $a _{2}$ है
यदि ${(a + b)^n}$ के प्रसार में $\frac{{{T_2}}}{{{T_3}}}$ व ${(a + b)^{n + 3}}$ के प्रसार में $\frac{{{T_3}}}{{{T_4}}}$ समान हैं, तब $n=$
यदि $(a+b)^{n}$ के प्रसार में प्रथम तीन पद क्रमशः $729,7290$ तथा $30375$ हों तो $a, b,$ और $n$ ज्ञात कीजिए।
${\left( {x - \frac{1}{{2x}}} \right)^8}$ के विस्तार में ${x^2}$ का गुणांक होगा