7.Binomial Theorem
hard

${({x^2} - x - 2)^5}$ ના વિસ્તરણમાં ${x^5}$ નો સહગુણક મેળવો.

A

$-83$

B

$-82$

C

$-81$

D

$0$

Solution

(c) ${({x^2} – x – 2)^5} = {(x – 2)^5}{(1 + x)^5}$

= $[\,{}^5{C_0}{x^5} – {}^5{C_1}{x^4} \times 2 + …\,]$ $[\,{}^5{C_0} + {}^5{C_1}x + …\,]$ 

Collecting the coefficient of $x^5$: 

=$1 – 5.5.2 + 10.10.4 – 10.10.8 + 5.5.16 – 32$ 

= $1 – 50 + 400 – 800 + 400 – 32 = – 81$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.