10-1.Thermometry, Thermal Expansion and Calorimetry
hard

બ્રાસ અને સ્ટીલના તારના રેખીય પ્રસરણાંક ${\alpha _1}$ અને ${\alpha _2}$ છે,તેમની $0°C$ તાપમાને લંબાઇ ${l_1}$ અને ${l_2}$ છે.જો કોઇપણ તાપમાને $({l_2} - {l_1})$ અચળ રહેતું હોય,તો

A

${\alpha _1}{l_2} = {\alpha _2}{l_1}$

B

${\alpha _1}l_2^2 = {\alpha _2}l_1^2$

C

$\alpha _1^2{l_1} = \alpha _2^2{l_2}$

D

${\alpha _1}{l_1} = {\alpha _2}{l_2}$

Solution

(d) ${L_2} = {l_2}(1 + {\alpha _2}\Delta \theta )$ and ${L_1} = {l_1}(1 + {\alpha _1}\Delta \theta )$

$ \Rightarrow ({L_2} – {L_1}) = ({l_2} – {l_1}) + \Delta \theta ({l_2}{\alpha _2} – {l_1}{\alpha _1})$

Now $({L_2} – {L_1}) = ({l_2} – {l_1})$ so, ${l_2}{\alpha _2} – {l_1}{\alpha _1} = 0$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.