एक समांतर श्रेणी के प्रथम चार पदों का योगफल $56$ है। अंतिम चार पदों का योगफल $112$ है। यदि इसका प्रथम पद $11$ है, तो पदों की संख्या ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the $A.P.$ be $a, a+d, a+2 d, a+3 d \ldots . a+(n-2) d, a+(n-1) d$

Sum of first four terms $=a+(a+d)+(a+2 d)+(a+3 d)=4 a+6 d$

Sum of last four terms

$=[a+(n-4) d]+[a+(n-3) d]+[a+(n-2) d]+[a+(n-1) d]$

$=4 a+(4 n-10) d$

According to the given condition,

$4 a+6 d=56$

$\Rightarrow 4(11)+6 d=56$            [ Since $a=11$ (given) ]

$=6 d=12$

$=d=2$

$\therefore 4 a+(4 n-10) d=112$

$\Rightarrow 4(11)+(4 n-10) 2=112$

$\Rightarrow(4 n-10) 2=68$

$\Rightarrow 4 n-10=34$

$\Rightarrow 4 n=44$

$\Rightarrow n=11$

Thus, the number of terms of the $A.P.$ is $11 .$

Similar Questions

माना $\alpha, \beta$ तथा $\gamma$ तीन धनात्मक वास्तविक संख्याएं हैं। माना $f ( x )=\alpha x ^5+\beta x ^3+\gamma x , x \in R$ तथा $g : R \rightarrow R$ इस प्रकार हैं कि सभी $x \in R$ के लिए $g ( f ( x ))= x$ है। यदि $a _1, a _2, a _3, \ldots, a _n$ एक संमातर श्रेढ़ी में है, जिनका माध्य शुन्य है, तो $f \left( g \left(\frac{1}{ n } \sum \limits_{ i =1}^{ n } f \left( a _{ i }\right)\right)\right)$ का मान बराबर है :

  • [JEE MAIN 2022]

यदि $\alpha ,\;\beta ,\;\gamma $ क्रमश: $ca,\;ab;\;ab,\;bc;\;bc,\;ca$ के गुणोत्तर माध्य हों जहाँ $a,\;b,\;c$ समान्तर श्रेणी में हैं, तो ${\alpha ^2},\;{\beta ^2},\;{\gamma ^2}$ होंगे

यदि तीन भिन्न संख्याएं $a, b, c$ गुणोत्तर श्रेढ़ी में है तथा समीकरण $ax ^{2}+2 bx + c =0$ और $dx ^{2}+2 ex +$ $f=0$ का एक उभयनिष्ठ मूल है, तो निम्न में से कौन-सा एक कथन सत्य है ?

  • [JEE MAIN 2019]

माना $\left(\frac{1}{\sqrt{6}}+\beta x\right)^4,(1-3 \beta x)^2$ तथा $\left(1-\frac{\beta}{2} x \right)^6, \beta > 0$ के प्रसार में मध्य पदों के गुणांक क्रमश: एक $A.P.$ के पहले तीन पद हैं। यदि इस $A.P.$ का सार्व अंतर $d$ है, तो $50-\frac{2 d }{\beta^2}$ बराबर है

  • [JEE MAIN 2022]

यदि ${a^2},\;{b^2},\;{c^2}$ समान्तर श्रेणी में हों, तो ${(b + c)^{ - 1}},\;{(c + a)^{ - 1}}$ व ${(a + b)^{ - 1}}$ होंगे