समकोणीय अतिपरवलय $xy = {c^2}$ की नाभियों के निर्देशांक हैं  

  • A

    $( \pm c,\; \pm c)$

  • B

    $( \pm c\sqrt 2 ,\; \pm c\sqrt 2 )$

  • C

    $\left( { \pm \frac{c}{{\sqrt 2 }},\; \pm \frac{c}{{\sqrt 2 }}} \right)$

  • D

    इनमें से कोई नहीं

Similar Questions

माना अतिपरवलय $3 \mathrm{x}^2-4 \mathrm{y}^2=36$ पर बिन्दु $\mathrm{P}\left(\mathrm{x}_0, \mathrm{y}_0\right)$, रेखा $3 \mathrm{x}+2 \mathrm{y}=1$ के निकटतम है। तो $\sqrt{2}\left(\mathrm{y}_0-\mathrm{x}_0\right)$ बराबर है:

  • [JEE MAIN 2023]

अतिपरवलय $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1$ के बिन्दु $(8,\;3\sqrt 3 )$ पर अभिलम्ब का समीकरण है  

अतिपरवलय $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1$ के बिन्दु $( - 4,\;0)$ पर अभिलम्ब का समीकरण होगा  

माना अतिपरवलय $\frac{ x ^2}{ a ^2}-\frac{ y ^2}{ b ^2}=1$ की उत्केन्द्रियता $\frac{5}{4}$ है। यदि अतिपरवलय के बिन्दु $\left(\frac{8}{\sqrt{5}}, \frac{12}{5}\right)$ पर अभिलम्ब का समीकरण $8 \sqrt{5} x +\beta y =\lambda$ हो तो $\lambda-\beta$ बराबर होगा $-$

  • [JEE MAIN 2022]

$m$ का वह मान जिसके लिए रेखा $y = mx + 6$ अतिपरवलय $\frac{{{x^2}}}{{100}} - \frac{{{y^2}}}{{49}} = 1$ की स्पर्श रेखा होगी, है