The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has

  • A

    One solution

  • B

    Two solution

  • C

    Four solution

  • D

    No solution

Similar Questions

${4 \over {1 + \sqrt 2 - \sqrt 3 }} = $

The value of $\sqrt {[12 - \sqrt {(68 + 48\sqrt 2 )} ]} = $

${{{{2.3}^{n + 1}} + {{7.3}^{n - 1}}} \over {{3^{n + 2}} - 2{{(1/3)}^{l - n}}}} = $

Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are

$\sqrt {(3 + \sqrt 5 )} - \sqrt {(2 + \sqrt 3 )} = $