The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has

  • A

    One solution

  • B

    Two solution

  • C

    Four solution

  • D

    No solution

Similar Questions

${{{{2.3}^{n + 1}} + {{7.3}^{n - 1}}} \over {{3^{n + 2}} - 2{{(1/3)}^{l - n}}}} = $

If ${x^{x\root 3 \of x }} = {(x\,.\,\root 3 \of x )^x},$ then $x =$

$\sqrt {(3 + \sqrt 5 )} $ is equal to

If ${a^x} = bc,{b^y} = ca,\,{c^z} = ab,$ then $xyz$=

${{\sqrt 2 } \over {\sqrt {(2 + \sqrt 3 )} - \sqrt {(2 - \sqrt 3 } )}} = $