The degree of ionization of a $0.1 \,M$ bromoacetic acid solution is $0.132$ Calculate the $pH$ of the solution and the $p K_{ a }$ of bromoacetic acid.
Degree of ionization, $a=0.132$
Concentration, $c=0.1\, M$
Thus, the concentration of $H _{3} O ^{+}= c$. $a$
$=0.1 \times 0.132$
$=0.0132$
$pH =-\log \left[ H ^{+}\right]$
$=-\log (0.0132)$
$=1.879: 1.88$
Now,
$K_{a}=C \alpha^{2}$
$=0.1 \times(0.132)^{2}$
$K_{a}=.0017$
$p K_{a}=2.75$
The $pH $ of a $0.01\,M$ solution of acetic acid having degree of dissociation $12.5\%$ is
A compound whose aqueous solution will have the highest $pH$
A weak monoprotic acid of $0.1\, M,$ ionizes to $1\% $ in solution. What will be the $pH $ of solution
$5.0$ $pH$ containing solution is dilute $100$ times. Calculate $pH$ of dilute solution.
$pH$ of $0.1\,\, M$ $N{H_3}$ aqueous solution is $({K_b} = 1.8 \times {10^{ - 5}})$