એક ડિઝાઇનમાં બનાવેલ વર્તુળોના વ્યાસ (મિમીમાં) નીચે આપ્યા છે :
વ્યાસ | $33-36$ | $37-40$ | $41-44$ | $45-48$ | $49-52$ |
વર્તુળોની સંખ્યા | $15$ | $17$ | $21$ | $22$ | $25$ |
વર્તુળોના વ્યાસનું પ્રમાણિત વિચલન અને મધ્યક વ્યાસ શોધો.
Class Interval |
Frequency ${f_i}$ |
Mid=point ${x_i}$ |
${y_i} = \frac{{{x_i} - 42.5}}{4}$ | ${f_i}^2$ | ${f_i}{y_i}$ | ${f_i}{y_i}^2$ |
$33-36$ | $15$ | $34.5$ | $-2$ | $4$ | $-30$ | $60$ |
$37-40$ | $17$ | $38.5$ | $-1$ | $1$ | $-17$ | $17$ |
$41-44$ | $21$ | $42.5$ | $0$ | $0$ | $0$ | $0$ |
$45-48$ | $22$ | $46.5$ | $1$ | $1$ | $22$ | $22$ |
$49-52$ | $25$ | $50.5$ | $2$ | $4$ | $50$ | $100$ |
$100$ | $25$ | $199$ |
here, $N=100,$ $h=4$
Let the assumed mean, $A,$ be $42.5$
Mean, $\bar x = A + \frac{{\sum\limits_{i = 1}^5 {{f_i}{y_i}} }}{N} \times h$
$ = 42.5 + \frac{{25}}{{100}} \times 4 = 43.5$
Variance, $\left( {{\sigma ^2}} \right) = \frac{{{h^2}}}{{{N^2}}}\left[ {N\sum\limits_{i = 1}^5 {{f_i}{y_i}^2 - {{\left( {\sum\limits_{i = 1}^5 {{f_i}{y_i}} } \right)}^2}} } \right]$
$=\frac{16}{10000}\left[100 \times 199-(25)^{2}\right]$
$=\frac{16}{10000}[19900-625]$
$=\frac{16}{10000} \times 19275$
$=30.84$
$\therefore$ Standard deviation $(\sigma)=5.55$
ધારો કે $a_1, a_2, \ldots a_{10}$ એવા $10$ અવલોકનો છે કે જેથી $\sum_{k=1}^{10} a_k=50$ અને $\sum_{k < j} a_k \cdot a_j=1100$, તો $a_1, a_2, \ldots, a_{10}$ નું પ્રમાણિત વિચલન ....................છે.
પ્રથમ $n $ અયુગ્મ પ્રાકૃતિક સંખ્યાઓનું પ્રમાણિત વિચલન = …….
કોઇ અલગ શ્રેણીમાં (જ્યારે બધા જ મૂલ્યો સમાન ન હોય) સરેરાશ વિચલન, મધ્યક અને પ્રમાણિત વિચલન વચ્ચેનો સંબંધ શું થાય ?
નીચે આપેલ માહિતી માટે મધયક અને વિચરણ મેળવો
$\begin{array}{|l|l|l|l|l|} \hline x & 1 \leq x<3 & 3 \leq x<5 & 5 \leq x<7 & 7 \leq x<10 \\ \hline f & 6 & 4 & 5 & 1 \\ \hline \end{array}$
જો બે $20$ અવલોકનો ધરાવતા ગણો છે જેના પ્રમાણિત વિચલન સમાન અને $5$ છે તેમાંથી એક ગણનો મધ્યક $17$ અને બીજા ગણનો મધ્યક $22$ છે તો બંને ગણોના સમૂહનો પ્રમાણિત વિચલન મેળવો