એક ડિઝાઇનમાં બનાવેલ વર્તુળોના વ્યાસ (મિમીમાં) નીચે આપ્યા છે : 

વ્યાસ  $33-36$ $37-40$ $41-44$ $45-48$ $49-52$
વર્તુળોની સંખ્યા $15$ $17$ $21$ $22$ $25$
 

વર્તુળોના વ્યાસનું પ્રમાણિત વિચલન અને મધ્યક વ્યાસ શોધો.  

Vedclass pdf generator app on play store
Vedclass iOS app on app store
Class Interval

Frequency

${f_i}$ 

Mid=point

${x_i}$

${y_i} = \frac{{{x_i} - 42.5}}{4}$ ${f_i}^2$ ${f_i}{y_i}$ ${f_i}{y_i}^2$
$33-36$ $15$ $34.5$ $-2$ $4$ $-30$ $60$
$37-40$ $17$ $38.5$ $-1$ $1$ $-17$ $17$
$41-44$ $21$ $42.5$ $0$ $0$ $0$ $0$
$45-48$ $22$ $46.5$ $1$ $1$ $22$ $22$
$49-52$ $25$ $50.5$ $2$ $4$ $50$ $100$
  $100$       $25$ $199$

here, $N=100,$ $h=4$

Let the assumed mean, $A,$ be $42.5$

Mean,   $\bar x = A + \frac{{\sum\limits_{i = 1}^5 {{f_i}{y_i}} }}{N} \times h$

$ = 42.5 + \frac{{25}}{{100}} \times 4 = 43.5$

Variance,  $\left( {{\sigma ^2}} \right) = \frac{{{h^2}}}{{{N^2}}}\left[ {N\sum\limits_{i = 1}^5 {{f_i}{y_i}^2 - {{\left( {\sum\limits_{i = 1}^5 {{f_i}{y_i}} } \right)}^2}} } \right]$

$=\frac{16}{10000}\left[100 \times 199-(25)^{2}\right]$

$=\frac{16}{10000}[19900-625]$

$=\frac{16}{10000} \times 19275$

$=30.84$

$\therefore$ Standard deviation $(\sigma)=5.55$

Similar Questions

ધારો કે $a_1, a_2, \ldots a_{10}$ એવા $10$ અવલોકનો છે કે જેથી $\sum_{k=1}^{10} a_k=50$ અને $\sum_{k < j} a_k \cdot a_j=1100$, તો $a_1, a_2, \ldots, a_{10}$ નું પ્રમાણિત વિચલન ....................છે.

  • [JEE MAIN 2024]

પ્રથમ $n $ અયુગ્મ પ્રાકૃતિક સંખ્યાઓનું પ્રમાણિત વિચલન = …….

કોઇ અલગ શ્રેણીમાં (જ્યારે બધા જ મૂલ્યો સમાન ન હોય) સરેરાશ વિચલન, મધ્યક અને પ્રમાણિત વિચલન વચ્ચેનો સંબંધ શું થાય ?

નીચે આપેલ માહિતી માટે મધયક અને વિચરણ મેળવો 

$\begin{array}{|l|l|l|l|l|} \hline x & 1 \leq x<3 & 3 \leq x<5 & 5 \leq x<7 & 7 \leq x<10 \\ \hline f & 6 & 4 & 5 & 1 \\ \hline \end{array}$

જો બે $20$ અવલોકનો ધરાવતા ગણો છે જેના પ્રમાણિત વિચલન સમાન અને $5$ છે તેમાંથી એક ગણનો મધ્યક $17$ અને બીજા ગણનો મધ્યક $22$ છે તો બંને ગણોના સમૂહનો પ્રમાણિત વિચલન મેળવો