$f(x)=\frac{1}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$ द्वारा परिभाषित फलन का प्रांत है
$\left( {1,2} \right) \cup \left( {2,\infty } \right)$
$\left( { - 1,0} \right) \cup \left( {1,2} \right) \cup \left( {3,\infty } \right)$
$\left( { - 1,0} \right) \cup \left( {1,2} \right) \cup \left( {2,\infty } \right)$
$\left( { - 2, - 1} \right) \cup \left( { - 1,0} \right) \cup \left( {2,\infty } \right)$
$\mathrm{f}(\mathrm{n})+\frac{1}{\mathrm{n}} \mathrm{f}(\mathrm{n}+1)=1, \forall \mathrm{n} \in\{1,2,3\}$
को संतुष्ट करने वाले फलनों
$\mathrm{f}:\{1,2,3,4\} \rightarrow\{\mathrm{a} \in \mathbb{Z}|\mathrm{a}| \leq 8\}$
की संख्या है -
मान लीजिए कि $f: R \rightarrow R$ एक सतत फलन इस प्रकार है कि सभी $x \in R$ के लिए $f\left(x^2\right)=f\left(x^3\right)$ है। निम्न कथनों पर विचार करें
$I$. $f$ एक विषम फलन है
$II$. $f$ एक सम फलन है
$III$. $f$ सभी जगह अवकलनीय है तब
माना द्विघात बहुपद $f ( x )$ इस प्रकार है कि $f (-2)+ f (3)=0$ है। यदि $f ( x )=0$ का एक मूल $-1$ है, तो $f ( x )=0$ के मूलों का योगफल है :
यदि $f(x)=\log _{e}\left(\frac{1-x}{1+x}\right),|x|<1$, है, तो $f\left(\frac{2 x}{1+x^{2}}\right)$ बराबर है
सिद्ध कीजिए कि $f: R \rightarrow\{x \in R :-1 < x < 1\}$ जहाँ $f(x)=\frac{x}{1+|x|}, x \in R$ द्वारा
परिभाषित फलन एकैकी तथा आच्छादक है ।