1.Relation and Function
medium

If $f(x) = \frac{{\alpha \,x}}{{x + 1}},\;x \ne - 1$. Then, for what value of $\alpha $ is $f(f(x)) = x$

A

$\sqrt 2 $

B

$ - \sqrt 2 $

C

$1$

D

$-1$

(IIT-2001)

Solution

(d) $f(f(x)) = \frac{{\alpha \,f(x)}}{{f(x) + 1}} $

$= \frac{{\alpha \left( {\frac{{\alpha x}}{{x + 1}}} \right)}}{{\left( {\frac{{\alpha x}}{{x + 1}} + 1} \right)}} = \frac{{{\alpha ^2}.x}}{{\alpha x + x + 1}}$

$\therefore$ $x = \frac{{{\alpha ^2}.x}}{{(\alpha + 1)x + 1}}$ or $x((\alpha + 1)x + 1 – {\alpha ^2}) = 0$

==> $(\alpha + 1){x^2} + (1 – {\alpha ^2})x = 0$. This should hold for all $x.$

==> $\alpha + 1 = 0,\,\,1 – {\alpha ^2} = 0$, 

$\because  \alpha = – 1$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.