$f(x,\;y) = \frac{1}{{x + y}}$ एक समघात फलन है, जिसकी घात है
$1$
$-1$
$2$
$-2$
फलन $\cos ^{-1}\left(\frac{2 \sin ^{-1}\left(\frac{1}{4 x^2-1}\right)}{\pi}\right)$ का प्रांत है :
$f(x)=4 \sin ^{-1}\left(\frac{x^2}{x^2+1}\right)$ का परिसर है
यदि $f(x) = \frac{1}{2} - \tan \left( {\frac{{\pi x}}{2}} \right)$; $\left( { - 1 < x < 1} \right)$ तथा $g(x) = \sqrt {3 + 4x - 4{x^2}} $, तो $gof$ का प्रान्त होगा
फलन $f(x)=\log _{\sqrt{5}}(3+\cos \left(\frac{3 \pi}{4}+x\right)+\cos \left(\frac{\pi}{4}+x\right)+\cos \left(\frac{\pi}{4}-x\right)$
$-\cos \left(\frac{3 \pi}{4}-x\right))$ का परिसर है
एक फलन $f$, समीकरण $3f(x) + 2f\left( {\frac{{x + 59}}{{x - 1}}} \right) = 10x + 30$, सभी $x \ne 1$ के लिए, को सन्तुष्ट करता है। तो $f(7)$ का मान है