- Home
- Standard 11
- Mathematics
एक दीर्घवृत्त, जिसका केन्द्र मूल बिन्दु पर है, की उत्केन्द्रता $\frac{1}{2}$ है। यदि उसकी एक नियता $x=-4$ है, तो उसके बिंदु $\left(1, \frac{3}{2}\right)$ पर उसके अभिलंब का समीकरण है:
$x + 2y = 4$
$2y - x = 2$
$4x - 2y = 1$
$4x + 2y = 7$
Solution
Eccentricity of ellipse $ = \frac{1}{2}$
Now, $ – \frac{a}{e} = – 4 \Rightarrow a = 4 \times \frac{1}{2} = 2 \Rightarrow a = 2$
we have ${b^2} = {a^2}\left( {1 – {e^2}} \right) = {a^2}\left( {1 – \frac{1}{4}} \right) = 4 \times \frac{3}{4} = 3$
$\therefore $ Equation of ellipse
$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{3} = 1$
Now differentiating, we get
$ \Rightarrow \frac{x}{2} + \frac{{2y}}{3} \times y' = 0 \Rightarrow y' = – \frac{{3x}}{{4y}}$
$y'\left| {_{\left( {1,3/2} \right)}} \right| = – \frac{3}{4} \times \frac{2}{3} = – \frac{1}{2}$
Slope of normal $=2$
$\therefore $ Equation of normal at $\left( {1,\frac{3}{2}} \right)$ is
$y – \frac{3}{2} = 2\left( {x – 1} \right) \Rightarrow 2y – 4x – 4$
$\therefore 4x – 2y = 1$