एक दीर्घवृत्त, जिसका केन्द्र मूल बिन्दु पर है, की उत्केन्द्रता $\frac{1}{2}$ है। यदि उसकी एक नियता $x=-4$ है, तो उसके बिंदु $\left(1, \frac{3}{2}\right)$ पर उसके अभिलंब का समीकरण है:

  • [JEE MAIN 2017]
  • A

    $x + 2y = 4$

  • B

    $2y - x = 2$

  • C

    $4x - 2y = 1$

  • D

    $4x + 2y = 7$

Similar Questions

दीर्घवृत्त  $9{x^2} + 5{y^2} - 30y = 0$ के दीर्घ अक्ष के सिरों पर खींची गई स्पर्श रेखाओं के समीकरण हैं

दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए

$16 x^{2}+y^{2}=16$

प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए

केंद्र $(0,0)$ पर, दीर्घ-अक्ष, $y-$अक्ष पर और बिंदुओं $(3,2)$ और $(1,6)$ से जाता है।

दीर्घवृत्त  $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ की परस्पर लम्ब स्पर्श रेखाओं के प्रतिच्छेद बिन्दु का बिन्दुपथ होगा   

यदि दीर्घवत्त $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ तथा वत्त $x^{2}+y^{2}=4 b$, $b >4$ के प्रतिच्छेदन बिन्दु वक्र $y ^{2}=3 x ^{2}$ पर स्थित हैं, तो $b$ बराबर है

  • [JEE MAIN 2021]