एक दीर्घवृत्त, जिसका केन्द्र मूल बिन्दु पर है, की उत्केन्द्रता $\frac{1}{2}$ है। यदि उसकी एक नियता $x=-4$ है, तो उसके बिंदु $\left(1, \frac{3}{2}\right)$ पर उसके अभिलंब का समीकरण है:

  • [JEE MAIN 2017]
  • A

    $x + 2y = 4$

  • B

    $2y - x = 2$

  • C

    $4x - 2y = 1$

  • D

    $4x + 2y = 7$

Similar Questions

दीर्घवृत्त  $4{x^2} + 9{y^2} - 8x - 36y + 4 = 0$ की नाभिलम्ब जीवा है

यदि दीर्घवृत्त $3 x ^{2}+4 y ^{2}=12$ के एक बिन्दु $P$ पर अभिलम्ब, रेखा $2 x + y =4$ के समान्तर है तथा $P$ पर दीर्घवृत की स्पर्श रेखा $Q (4,4)$ से होकर जाती है, तो $PQ$ बराबर हैं 

  • [JEE MAIN 2019]

यदि रेखा $y = mx + c$ दीर्घवृत्त  $\frac{{{x^2}}}{{{b^2}}} + \frac{{{y^2}}}{{{a^2}}} = 1$ को स्पर्श करती है, तो $c = $

उस दीर्घवृत्त का समीकरण जिसकी नाभियाँ के बीच की दूरी $8$ एवं नियताओं के बीच की दूरी $18$ है, होगा   

यदि दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ जिसकी नाभियाँ ${F_1}$ व ${F_2}$ हैं पर एक चर बिन्दु $P$ है। यदि $A$, त्रिभुज $P{F_1}{F_2}$ का क्षेत्रफल हो तो $A$ का अधिकतम मान है  

  • [IIT 1994]