यदि दीर्घवृत्त $4 x ^{2}+ y ^{2}=8$ के बिन्दुओं $(1,2)$ तथा $( a , b )$ पर खींची गई स्पर्श रेखाएँ परस्पर लम्बवत् है, तो $a ^{2}$ बराबर है
$\frac{2}{{17}}$
$\frac{4}{{17}}$
$\frac{64}{{17}}$
$\frac{128}{{17}}$
यदि दो दीर्घवृत्तों $\frac{{{x^2}}}{{169}} + \frac{{{y^2}}}{{25}} = 1$ तथा $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ की उत्केन्द्रतायें बराबर हो, तो $\frac{a}{b}$ का मान होगा
यदि दीर्घवृत्त का लघुअक्ष $8$, उत्केन्द्रता $\frac{{\sqrt 5 }}{3}$ हो, तब दीर्घाक्ष होगा
यदि $\theta $ तथा $\phi $, दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के संयुग्मी व्यासों के सिरों के उत्केन्द्र कोण हैं, तो $\theta - \phi $ बराबर होगा
माना दीर्घवृत्त $\frac{x^2}{36}+\frac{y^2}{4}=1$ के बिंदु $(3 \sqrt{3}, 1)$ पर स्पर्श रेखा तथा अभिलंब $\mathrm{y}$-अक्ष को क्रमशः बिंदुओं $\mathrm{A}$ तथा $B$ पर मिलते हैं। माना $A B$ को एक व्यास लेकर खींचा गया वृत्त $C$ है तथा रेखा $x=2 \sqrt{5}$, वृत्त $C$ को बिंदुओं $\mathrm{P}$ तथा $\mathrm{Q}$ पर काटती है। यदि वृत्त के बिंदुओं $P$ तथा $Q$ पर स्पर्श रेखाओं का प्रतिच्छेदन बिंदु $(\alpha, \beta)$ है, तो $\alpha^2-\beta^2$ बराबर है
यदि एक दीर्घवृत्त की एक नाभि तथा संगत नियता के बीच की दूरी $8$ तथा उत्केन्द्रता $\frac{1}{2}$ हो, तो दीर्घवृत्त के लघुअक्ष की लम्बाई होगी