यदि $e _{1}$ तथा $e _{2}$ क्रमशः दीर्घवृत्त $\frac{ x ^{2}}{18}+\frac{ y ^{2}}{4}=1$ तथा अतिपरवलय $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ की उत्केंद्रताएँ है तथा $\left( e _{1}, e _{2}\right)$ दीर्घवृत्त $15 x ^{2}+3 y ^{2}= k$ पर स्थित एक बिन्दु है, तो $k$ का मान है
$15$
$14$
$17$
$16$
यदि अतिपरवलय $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{9} = 1$ के बिन्दु $(2\sec \phi ,\;3\tan \phi )$ पर स्पर्श $3x - y + 4 = 0$ के समान्तर है, तब $f$ का मान ............. $^o$ है
अतिपरवलयों के शीर्षों, नाभियों के निर्देशांक, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
माना $\mathrm{A}, \mathrm{x}$-अक्ष पर एक बिन्दु है। $\mathrm{A}$ से वक्रों $x^2+y^2=8$ व $y^2=16 x$ पर उभयनिष्ठ स्पर्श रेखाएं खींची जाती हैं। यदि इनमें से एक स्पर्श रेखा दोनों वक्रों को $\mathrm{Q}$ तथा $\mathrm{R}$ पर स्पर्श करती है, तब $(\mathrm{QR})^2$ बराबर है :
एक अतिपरवलय $4 x^{2}-y^{2}=36$ के बिंदुओ $P$ तथा $Q$ पर स्यर्श रेखाएँ खींची जाती है। यदि यह स्पर्शरखाएँ बिंदु $T(0,3)$ पर काटती हैं, तो $\Delta P T Q$ का क्षेत्रफल (वर्ग इकाइयों में) है
सरल रेखाओं $\frac{x}{a} - \frac{y}{b} = m$ तथा $\frac{x}{a} + \frac{y}{b} = \frac{1}{m}$ के प्रतिच्छेद बिन्दु का बिन्दुपथ होगा