यदि $e _{1}$ तथा $e _{2}$ क्रमशः दीर्घवृत्त $\frac{ x ^{2}}{18}+\frac{ y ^{2}}{4}=1$ तथा अतिपरवलय $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ की उत्केंद्रताएँ है तथा $\left( e _{1}, e _{2}\right)$ दीर्घवृत्त $15 x ^{2}+3 y ^{2}= k$ पर स्थित एक बिन्दु है, तो $k$ का मान है

  • [JEE MAIN 2020]
  • A

    $15$

  • B

    $14$

  • C

    $17$

  • D

    $16$

Similar Questions

रेखाओं $(\sqrt{3}) kx + ky -4 \sqrt{3}=0$ तथा $\sqrt{3} x - y -4(\sqrt{3}) k =0$ के प्रतिच्छेदन बिंदु का बिंदुपथ एक शांकव है, जिसकी उत्केन्द्रता है .......... |

  • [JEE MAIN 2021]

अतिपरवलय $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$ के नाभिलंब के एक सिरे (जो प्रथम चतुर्थांश में है) पर खींची गई स्पर्श रेखा $x$-अक्ष तथा $y$-अक्ष को क्रमश बिन्दुओं $A$ तथा $B$ पर मिलती हैं, तो $( OA )^{2}-( OB )^{2}$, जहाँ $O$ मूल बिंदु है, बराबर है

  • [JEE MAIN 2014]

अतिपरवलय की उत्केन्द्रता कभी भी निम्न के बराबर नहीं हो सकती

अतिपरवलय की किन्हीं दो लम्बवत् स्पर्श रेखाओं के प्रतिच्छेद बिन्दु का बिन्दुपथ एक वृत्त होता है जिसे अतिपरवलय का नियामक वृत्त कहते है, तो इस वृत्त का समीकरण है

एक अतिपरवलय की नाभियाँ $( \pm 2,0)$ हैं तथा इसकी उत्केन्द्रता $\frac{3}{2}$ है। प्रथम चतुर्थांश में अतिपरवलय के एक बिंदु पर एक स्पर्श रेखा, जो $2 x+3 y=6$ के लंबवत है, खींची जाती है। यदि यह स्पर्श रेखा, $x$ - तथा $y$-अक्षों पर क्रमशः अंतःखंड $a$ तथा $b$ बनाती है, तो $|6 \mathrm{a}|+|5 \mathrm{~b}|$ बराबर है_______.

  • [JEE MAIN 2023]