यदि $e _{1}$ तथा $e _{2}$ क्रमशः दीर्घवृत्त $\frac{ x ^{2}}{18}+\frac{ y ^{2}}{4}=1$ तथा अतिपरवलय $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ की उत्केंद्रताएँ है तथा $\left( e _{1}, e _{2}\right)$ दीर्घवृत्त $15 x ^{2}+3 y ^{2}= k$ पर स्थित एक बिन्दु है, तो $k$ का मान है
$15$
$14$
$17$
$16$
अतिपरवलय $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ के लिए $'\alpha '$ का मान परिवर्तित करने पर निम्न में से क्या अचर रहेगा
समकोणीय अतिपरवलय $xy = {c^2}$ की नाभियों के निर्देशांक हैं
यदि $5{x^2} + \lambda {y^2} = 20$ एक समकोणीय अतिपरवलय निरूपित करता है, तो $\lambda $ बराबर होगा
$m$ का वह मान जिसके लिए रेखा $y = mx + 6$ अतिपरवलय $\frac{{{x^2}}}{{100}} - \frac{{{y^2}}}{{49}} = 1$ की स्पर्श रेखा होगी, है
यदि अतिपरवलयों $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ तथा $\frac{{{y^2}}}{{{b^2}}} - \frac{{{x^2}}}{{{a^2}}} = 1$ की उत्केन्द्रतायें क्रमश: e तथा ${e_1}$ हों, तो $\frac{1}{{{e^2}}} + \frac{1}{{e_1^2}} = $