The rationalising factor of ${a^{1/3}} + {a^{ - 1/3}}$ is
${a^{1/3}} - {a^{ - 1/3}}$
${a^{2/3}} + {a^{ - 2/3}}$
${a^{2/3}} - {a^{ - 2/3}}$
${a^{2/3}} + {a^{ - 2/3}} - 1$
Let ${7 \over {{2^{1/2}} + {2^{1/4}} + 1}}$$ = A + B{.2^{1/4}} + C{.2^{1/2}} + D{.2^{3/4}}$, then $A+B+C+D= . . .$
If ${a^x} = {(x + y + z)^y},{a^y} = {(x + y + z)^z}$, ${a^z} = {(x + y + z)^x},$ then
The number of integers $q , 1 \leq q \leq 2021$, such that $\sqrt{ q }$ is rational, and $\frac{1}{ q }$ has a terminating decimal expansion, is
The value of the fifth root of $10^{10^{10}}$ is
${{{{[4 + \sqrt {(15)} ]}^{3/2}} + {{[4 - \sqrt {(15)} ]}^{3/2}}} \over {{{[6 + \sqrt {(35)} ]}^{3/2}} - {{[6 - \sqrt {(35)} ]}^{3/2}}}} = $