The rationalising factor of ${a^{1/3}} + {a^{ - 1/3}}$ is
${a^{1/3}} - {a^{ - 1/3}}$
${a^{2/3}} + {a^{ - 2/3}}$
${a^{2/3}} - {a^{ - 2/3}}$
${a^{2/3}} + {a^{ - 2/3}} - 1$
The greatest number among $\root 3 \of 9 ,\root 4 \of {11} ,\root 6 \of {17} $ is
If $x = 3 - \sqrt {5,} $ then ${{\sqrt x } \over {\sqrt 2 + \sqrt {(3x - 2)} }} = $
The value of $\sqrt {[12 - \sqrt {(68 + 48\sqrt 2 )} ]} = $
If $a = \sqrt {(21)} - \sqrt {(20)} $ and $b = \sqrt {(18)} - \sqrt {(17),} $ then
If ${\left( {{2 \over 3}} \right)^{x + 2}} = {\left( {{3 \over 2}} \right)^{2 - 2x}},$then $x =$