यदि $OB$, एक दीर्घवृत्त का अर्ध लघुअक्ष है, $F _{1}$ तथा $F _{2}$ उसकी नाभियाँ हैं तथा $F _{1} B$ तथा $F _{2} B$ के बीच का कोण एक समकोण है, तो दीर्घवृत्त की उत्केंद्रता का वर्ग है
$\frac{1}{2}$
$\frac{1}{{\sqrt 2 }}$
$\frac{1}{{2\sqrt 2 }}$
$\frac{1}{4}$
सरल रेखा $x + 4y = 4$ का दीर्घवृत्त ${x^2} + 4{y^2} = 4$ के सापेक्ष ध्रुव है
उस दीर्घवृत्त का समीकरण जिसका एक शीर्ष $(0,7)$ तथा संगत नियता $y = 12$ है, होगा
एक दीर्घवृत्त की नाभियों के बीच की दूरी, इसके नाभिलंब की लंबाई की आधी है, तो दीर्घवृत्त की उत्केंद्रता है
दीर्घवृत्त $9{x^2} + 5{y^2} = 45$ के बिन्दु $ (0, 3)$ पर अभिलम्ब का समीकरण है
माना वक्र $9 x^2+16 y^2=144$ की एक स्पर्श रेखा निर्देशांक अक्षों को बिन्दुओं $\mathrm{A}$ तथा $\mathrm{B}$ पर मिलती है। तो रेखाखंड $\mathrm{AB}$ की न्यूनतम लंबाई_______________.