यदि $OB$, एक दीर्घवृत्त का अर्ध लघुअक्ष है, $F _{1}$ तथा $F _{2}$ उसकी नाभियाँ हैं तथा $F _{1} B$ तथा $F _{2} B$ के बीच का कोण एक समकोण है, तो दीर्घवृत्त की उत्केंद्रता का वर्ग है
$\frac{1}{2}$
$\frac{1}{{\sqrt 2 }}$
$\frac{1}{{2\sqrt 2 }}$
$\frac{1}{4}$
माना रेखा $y = mx$ तथा दीर्घवृत $2 x ^{2}+ y ^{2}=1$, प्रथम चतुर्थांश में स्थित एक बिंदु $P$ पर काटते हैं। यदि इस दीर्घवृत्त का $P$ पर अभिलंब, निर्देशांक अक्षों को क्रमशः $\left(-\frac{1}{3 \sqrt{2}}, 0\right)$ तथा $(0, \beta)$ पर मिलता है, तो $\beta$ का मान है
यदि दीर्घवृत्त का नाभिलम्ब उसकी लघु अक्ष के आधे के बराबर हो, तो उसकी उत्केन्द्रता है
यदि दीर्घवृत्त $\frac{x^2}{4}+\frac{y^2}{b^2}=1, b<2$, के अभिलंब की मूलबिंदु से अधिकतम दूरी $1$ है, तो दीर्घवृत्त की उत्केन्द्रता है।
दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$16 x^{2}+y^{2}=16$
यदि दीर्घवत्त, $x ^{2}+4 y ^{2}=4$ की एक स्पर्शरेखा, इसके दीर्घ अक्ष के छोरों पर खींची गई स्पर्श रेखाओं को बिन्दुओं $B$ तथा $C$ पर मिलती है, तो $BC$ को व्यास मान कर खींचा गया वत्त निम्न में से किस बिन्दु से होकर जाता है ?